首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
刘贵立 《物理学报》2010,59(1):499-503
通过自编软件建立了铝氧化膜与基体铌界面的原子集团模型,用递归法计算了合金的原子埋置能、原子结合能等电子参数,从电子层面分析铌合金高温氧化机理.研究表明:铝通过晶界扩散偏聚在合金表面,并与氧结合生成致密的Al2O3氧化膜,阻挡氧向铌基体扩散.晶界和稀土元素能提高氧化膜与基体间的原子结合能,增加其界面的结合强度,加强氧化膜与基体铌间的黏附性.因此,通过在合金中添加稀土元素或细化合金晶粒均能提高铌合金的抗高温氧化性能.  相似文献   

2.
As potential gate dielectric materials, pseudobinary oxide (TiO2)x(Al2O3)1-x (0.1≤x≤0.6) films (TAO) were deposited on Si (100) substrates by pulsed-laser deposition method and studied systematically via various measurements. By a special deposition process, including two separate steps, the TAO films were deposited in the form of two layers. The first layer was deposited at room temperature and the second layer was completed at the substrate temperature of 400 °C. Detailed data show that the properties of the TAO films are closely related to the ratio between TiO2 and Al2O3. The existence of the first layer deposited at room temperature can effectively restrain the formation of the interfacial layer. And according to the results of X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy performed on the films, no other information belonging to the silicon oxide could be observed. For the (TiO2)0.4(Al2O3)0.6 film, the best result has been achieved among all samples and its dielectric constant is evaluated to be about 38. It is valuable for the amorphous TAO film as one of the promising dielectric materials for high-k gate dielectric applications. PACS 77.55.+f; 73.40.Qv; 81.15.Fg  相似文献   

3.
承焕生  要小未  杨福家 《物理学报》1993,42(7):1110-1115
本文介绍了用MeV离子散射和沟道效应研究单晶铝表面无定型氧化层与基体之间界面原子结构的方法。报道了Al2O3/Al(100)界面原子结构的实验结果。实验表明,在纯氧气氛围中400℃下生成的氧化铝膜,铝和氧原子浓度比例严格为2与3之比;Al2O3膜和Al(100)基体之间的界面极其陡峭,氧化铝膜下Al(100)基体表面的再构层不大于一个原子层。由实验测量与用Monte Carlo方法计算结果比较,得到再构层原子离开原来晶 关键词:  相似文献   

4.

The results of structural and magnetic investigations of nanogranular Co–Al2O3 films formed from Co3O4/Al thin-film layered structures upon vacuum annealing are reported. The Co3O4/Al films have been obtained by sequential reactive magnetron sputtering of a metallic cobalt target in a medium consisting of the Ar + O2 gas mixture and magnetron sputtering of an aluminum target in the pure argon atmosphere. It is shown that such a technique makes it possible to obtain nanogranular Co–Al2O3 single- and multilayer thin films with a well-controlled size of magnetic grains and their distribution over the film thickness.

  相似文献   

5.
Zirconium (Zr) oxide films were directly deposited on Si substrate by using Ar and O2 mixed electron cyclotron resonance plasma sputtering. The structural and electrical properties of the deposited ZrO2 film were investigated in detail. According to the X-ray diffraction and Fourier transform infrared spectrometer measurements, polycrystalline films consisting of a monoclinic state were formed at substrate temperatures between 130 and 400 °C. An interfacial Si oxide layer was found and the thickness increased as the substrate temperature increased. It was found from the I–V measurement that the electrical properties of the deposited ZrO2 films were very sensitive to the O2 flow rate, and the dielectric breakdown field of 3∼5 MV/cm was achieved under the optimum condition. Permittivity of the ZrO2 film was extracted by linear fitting of the reciprocal accumulation capacitance versus oxide thickness. The permittivity was 20.5 and an interfacial Si oxide layer was 2.3 nm. Both were very consistent with the result obtained from spectroscopic ellipsometer. PACS 77.55.+f; 81.15.Cd; 52.77.Dq  相似文献   

6.
The growth and properties of gadolinium oxide (Gd2O3) films prepared by anodic oxidation were investigated. Uniform Gd2O3 thin film with good oxide quality was obtained. The X-ray diffraction (XRD) pattern of the Gd2O3 films showed that they had a poly-crystalline structure. The dielectric constants of Gd2O3 films oxidized at 30 and 60 V are 9.4 and 12.2, respectively. The equivalent oxide thickness (EOT) of the Gd2O3 stacked oxide is in the range of 5.8-9.4 nm. The MOS capacitor with Gd2O3 exhibits interesting electrical properties. Longer oxidation time reduced the leakage current density for 30 V anodic oxidation but increased the leakage current density for 60 V anodic oxidation. This work reveals that Gd2O3 could also be an alternative dielectric for Si substrate and therefore, might pave the way to fabricate CMOS devices in the future.  相似文献   

7.
The paper gives the leakage and emission characteristics of sandwich cathodes of the type Al-Al2O3-Au prepared on polycrystalline Al and on a layer of Al deposited in vacuum with a layer of Al2O3 100–500 Å thick. The samples with a monotonous leakage characteristic have an exponential emission characteristic and the samples with anomalous leakage characteristic showing a maximum have an emission characteristic beginning at anomally small voltages on the sample and in the energy spectrum they exhibit excess energy. The relationship between these two types and the method of preparing the layers is given. Measurements are described which bear witness to the slow processes taking place in the cathode and the paper gives hypotheses on the mechanism of emission from such cathodes.Thanks are due to I. Emmer who prepared a number of samples and performed several measurements (Figs. 3, 10) for paper [14] which the present author has used here.  相似文献   

8.
The temperature dependences of the capacitance and conductance measured for samples of porous aluminum oxide films with inclusions of triglycine sulfate have been investigated. The character of these dependences obtained for the films treated in a humid atmosphere differs from that of the corresponding dependences measured for the initial porous Al2O3 matrix, bulk triglycine sulfate, and dried Al2O3 + triglycine sulfate composite. The observed changes are determined by the influence of the water adsorbed on the surface of the film and the water structured in pores of the composite.  相似文献   

9.
Amorphous La-doped Al2O3 (La: Al2O3) thin films are deposited on n-type (100) Si substrates by rf magnetron co-sputterlng. The composition of the deposited films is measured by energy dispersive x-ray spectroscopy: Capacitance-voltage measurement shows that the dielectric constant k of La-doped Al2O3 films ranges from 8.5 to 11.6 with the increasing La content, and the highest k value of 11.6 is obtained for the 20.14% La content film. In the structure of the Al/La:Al2O3/Si metal oxide semiconductor, the dominant conduction stems from the space- charge-limited current at different temperatures. In addition, the wavelength dependence of the transmittance is studied by ultraviolet spectroscopy and the band gap of all the deposited films is above 5.5eV. The results demonstrate that La-doped Al2O3 can meet the requirement of next-generation gate materials.  相似文献   

10.
The electrochemical characteristics of alumina dielectric layers were studied using a surface roughness factor and an impedance spectroscopy. From the limiting diffusion current method, the surface area factor of the dielectric anodic layer with low electrical conductivity was estimated to be 1.03. As alumina dielectric films on Al have a variable stoichiometry, the electrochemical behavior of Al2O3 layer can be monitored by evaluating an equivalent circuit with Young impedance of dielectric constant with a vertical decay of conductivity.  相似文献   

11.
High-k polycrystalline Pr2O3 and amorphous LaAlO3 oxide thin films deposited on Si(0 0 1) are studied. The microstructure is investigated using X-ray diffraction and scanning electron microscopy. Optical properties are determined in the 0.75-6.5 eV photon energy range using spectroscopic ellipsometry. The polycrystalline Pr2O3 films have an optical gap of 3.86 eV and a dielectric constant of 16-26, which increases with film thickness. Similarly, very thin amorphous LaAlO3 films have the optical gap of 5.8 eV, and a dielectric constant below 14 which also increases with film thickness. The lower dielectric constant compared to crystalline material is an intrinsic characteristic of amorphous films.  相似文献   

12.
The thermal stability and the electrical properties of HfO2 and Hf–aluminate films prepared by the pulsed laser deposition technique have been investigated by X-ray diffraction, differential thermal analysis, capacitance–voltage correlation, leakage-current measurements and high-resolution transmission electron microscopy observation, respectively. A crystallization transformation from HfO2 amorphous phase to polycrystalline monoclinic structure occurs at about 500 °C. In contrast, the amorphous structure of Hf–aluminate films remains stable at higher temperatures up to 900 °C. Rapid thermal annealing at 1000 °C for 3 min leads to a phase separation in Hf–aluminate films. Tetragonal HfO2(111) is predominant, and Al2O3 separates from Hf–aluminate and is still in the amorphous state. The dielectric constant of amorphous HfO2 and Hf–aluminate films was determined to be about 26 and 16.6, respectively, by measuring a Pt/dielectric film/Pt capacitor structure. A very small equivalent oxide thickness (EOT) value of 0.74 nm for a 3-nm physical thickness Hf–aluminate film on a n-Si substrate with a leakage current of 0.17 A/cm2 at 1-V gate voltage was obtained. The interface at Hf–aluminate/Si is atomically sharp, while a thick interface layer exists between the HfO2 film and the Si substrate, which makes it difficult to obtain an EOT of less than 1 nm. PACS 77.55.+f; 81.15.Fg; 73.40.Qv  相似文献   

13.
In this paper, we describe the physical properties and electrical characteristics of thin Sm2O3 dielectric films deposited on Si (100) by means of rf reactive sputtering. The structural and morphological features of these films were studied, as a function of the growth conditions (three various argon-to-oxygen flow ratios: 10/15, 15/10 and 20/5, and temperature from 600 to 800 °C), by x-ray diffraction, atomic force microscopy, and x-ray photoelectron spectroscopy. It is found that Sm2O3 dielectric prepared under 15/10 flow ratio and annealed at 700 °C exhibits a thinner capacitance equivalent thickness and excellent electrical properties, including the interface trap density, the hysteresis and frequency dispersion in the capacitance-voltage curves. This condition is attributed to the reduction of the interfacial SiO2 and silicate formation, and the small of surface roughness due to the optimization of oxygen in the Sm2O3 film.  相似文献   

14.
Al-Al2O3 composite coatings with different Al2O3 particle shapes were prepared on Si and Al substrate by cold spray. The powder compositions of metal (Al) and ceramic (Al2O3) having different sizes and agglomerations were varied into ratios of 10:1 wt% and 1:1 wt%. Al2O3 particles were successfully incorporated into the soft metal matrix of Al. It was found that crater formation between the coatings and substrate, which is typical characteristic signature of cold spray could be affected by initial starting Al2O3 particles. In addition, when the large hard particles of fused Al2O3 were employed, the deep and big craters were generated at the interface between coatings and hard substrates. In the case of pure soft metal coating such as Al on hard substrate, it is very hard to get proper adhesion due to lack of crater formation. Therefore, the composite coating would have certain advantages.  相似文献   

15.
Growth and interfacial properties of atomic layer deposited Al0.7Ti0.3O y on Ge have been investigated as a potential high-k gate dielectric for future Ge-based metal oxide semiconductor devices. A sandwich structure of Al2O3/TiO2 stack is proposed for Al2O3/TiO2 intermixing and high-k/Ge interfacial passivation. The film thicknesses and interface microstructure are characterized by spectroscopy ellipsometry and high-resolution transmission electron microscopy. X-ray photoelectron spectrometry is used to analyze the chemical composition and bonding states, and to reveal the band alignment of high-k/Ge heterojunctions. Metal-oxide-capacitors are formed by depositing aluminum electrodes to perform capacitance–voltage measurements for electrical characteristics. All evidences show a positive prospect of employing atomic layer deposited Al0.7Ti0.3O y as high-k gate dielectric for future Ge-based devices.  相似文献   

16.
The paper reports an experimental study of the structure of a strontium titanate film on a sapphire substrate and of the dielectric properties of capacitors based on a SrTiO3/Pt/Al2O3 multilayer system before and after a high-temperature anneal. The macro-and microstructure of SrTiO3 films and its variation induced by the annealing have been investigated. The temperature and field dependences of the dielectric permittivity of strontium titanate films have been determined, and their comparison with similar data for single crystals carried out. The mechanisms by which annealing can affect the capacitor capacitance and the properties of SrTiO3 films are discussed. Fiz. Tverd. Tela (St. Petersburg) 40, 1473–1478 (August 1998)  相似文献   

17.
The origin behind crystalline silicon surface passivation by Al2O3 films is studied in detail by means of spatially‐resolved electron energy loss spectroscopy. The bonding configurations of Al and O are studied in as‐deposited and annealed Al2O3 films grown on c‐Si substrates by plasma‐assisted and thermal atomic layer deposition. The results confirm the presence of an interfacial SiO2‐like film and demonstrate changes in the ratio between tetrahedrally and octahedrally coordinated Al in the films after annealing. These observations reveal the underlying origin of c‐Si surface passivation by Al2O3. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
张国英  张辉  方戈亮  罗志成 《物理学报》2009,58(9):6441-6445
通过自编软件建立了Fe-Cr-Al合金表面、氧化膜/基体界面模型,采用递归法计算了合金元素在Fe-Cr-Al合金表面、氧化膜/基体界面的环境敏感镶嵌能、亲和能、结合能、态密度等电子结构参数.从电子层次系统研究了Fe-Cr-Al合金氧化膜的形成机理、稀土元素和杂质硫对氧化膜形成过程及黏附性的影响机理.研究表明Fe-Cr-Al合金中Al的偏聚驱动力远大于Y,Cr.氧化初期氧从合金表面向合金内部扩散,合金内部Al向合金表面扩散,使合金形成富铝、氧表面层;氧与Al间的亲和力较大(亲和能低),氧原子容易与Al结合生成Al2O3保护膜;合金中加入Y后,Y在合金表面偏聚,抑制Al向合金表面扩散,氧化膜的横向生长得到有效控制,从而避免氧化膜皱褶形貌的发生,提高氧化膜的黏附性;合金内部的S通过扩散汇集在基体/氧化膜界面,S使界面区原子的总能增高,总态密度降低,减小了界面的稳定性,进而削弱氧化膜与合金基体的结合力. 关键词: 电子结构 高温氧化 Fe-Cr-Al合金  相似文献   

19.
Methods of Auger electron spectroscopy (AES), spectroscopy of characteristic electron energy losses (SCEEL), slow electron diffraction (SED), and contact potential difference (CPD) in ultrahigh vacuum are used to investigate the adsorption-emission properties and stability of two-component film systems formed by putting of Ti, Cr, and Cu atoms on MgO–Mo(011) and Al2O3–Mo(011) surfaces. All atoms have the properties of electronegative adsorbates. Continuous adatom monolayers are formed on the Al2O3–Mo(011) system surface, and three-dimensional islands are formed on the MgO–Mo(011) surface. The properties of monoatomic films on the oxide layer surface are close to those observed for bulk materials. No radical changes of the system properties are detected with increasing dielectric layer thickness. The thermal stability of the newly formed structures decreases in the order Ti, Cr, Cu, Al2O3(MgO), and Mo(011).  相似文献   

20.
在蓝宝石衬底上采用原子层淀积法制作了三种不同Al2O3介质层厚度的绝缘栅高电子迁移率晶体管.通过对三种器件的栅电容、栅泄漏电流、输出和转移特性的测试表明:随着Al2O3介质层厚度的增加,器件的栅控能力逐渐减弱,但是其栅泄漏电流明显降低,击穿电压相应提高.通过分析认为薄的绝缘层能够提供大的栅电容,因此其阈值电压较小,但是绝缘性能较差,并不能很好地抑制栅电流的泄漏;其次随着介质厚度的增加,可以对栅极施加更高的正偏压,因此获 关键词: 2O3')" href="#">Al2O3 金属氧化物半导体-高电子迁移率晶体管 介质层厚度 钝化  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号