首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phagocytes such as neutrophils play a vital role in host defense against microbial pathogens. The anti-microbial function of neutrophils is based on the production of superoxide anion (O2•-), which generates other microbicidal reactive oxygen species (ROS) and release of antimicrobial peptides and proteins. The enzyme responsible for O2•- production is called the NADPH oxidase or respiratory burst oxidase. This multicomponent enzyme system is composed of two transmembrane proteins (p22phox and gp91phox, also called NOX2, which together form the cytochrome b558) and four cytosolic proteins (p47phox, p67phox, p40phox and a GTPase Rac1 or Rac2), which assemble at membrane sites upon cell activation. NADPH oxidase activation in phagocytes can be induced by a large number of soluble and particulate agents. This process is dependent on the phosphorylation of the cytosolic protein p47phox. p47phox is a 390 amino acids protein with several functional domains: one phox homology (PX) domain, two src homology 3 (SH3) domains, an auto-inhibitory region (AIR), a proline rich domain (PRR) and has several phosphorylated sites located between Ser303 and Ser379. In this review, we will describe the structure of p47phox, its phosphorylation and discuss how these events regulate NADPH oxidase activation.  相似文献   

2.
Rac1 and Rac2 are essential for the control of oxidative burst catalyzed by NADPH oxidase. It was also documented that Rho is associated with the superoxide burst reaction during phagocytosis of serum- (SOZ) and IgG-opsonized zymosan particles (IOZ). In this study, we attempted to reveal the signal pathway components in the superoxide formation regulated by Rho GTPase. Tat-C3 blocked superoxide production, suggesting that RhoA is essentially involved in superoxide formation during phagocytosis of SOZ. Conversely SOZ activated both RhoA and Rac1/2. Inhibition of RhoA-activated kinase (ROCK), an important downstream effector of RhoA, by Y27632 and myosin light chain kinase (MLCK) by ML-7 abrogated superoxide production by SOZ. Extracellular signaling-regulated kinase (ERK)1/2 and p38 mitogen-activated protein kinase (MAPK) were activated during phagocytosis of SOZ, and Tat-C3 and SB203580 reduced ERK1/2 and p38 MAPK activation, suggesting that RhoA and p38 MAPK may be upstream regulators of ERK1/2. Inhibition of ERK1/2, p38 MAPK, phosphatidyl inositol 3-kinase did not block translocation of RhoA to membranes, suggesting that RhoA is upstream to these kinases. Inhibition of RhoA by Tat-C3 blocked phosphorylation of p47(PHOX). Taken together, RhoA, ROCK, p38MAPK, ERK1/2, and p47(PHOX) may be subsequently activated, leading to activation of NADPH oxidase to produce superoxide.  相似文献   

3.
The phagocyte NADPH oxidase complex plays a crucial role in host defense against microbial infection through the production of superoxides. Chronic granulomatous disease (CGD) is an inherited immune deficiency caused by the absence of certain components of the NADPH oxidase. Key to the activation of the NADPH oxidase is the cytoplasmic subunit p47phox, which includes the tandem SH3 domains (N-SH3 and C-SH3). In active phagocytes, p47phox forms a stable complex with the cytoplasmic region of membrane subunit p22phox that forms a left-handed polyproline type-II (PPII) helix conformation. In this report, we have analyzed the conformational changes of p47phox-p22phox complexes of wild-type and three mutants, which have been detected in CGD patients, using molecular dynamics simulations. We have found that in the wild-type, two basal planes of PPII prism in cytoplasmic region of p22phox interacted with N-SH3 and C-SH3. In contrast, in the modeled mutants, the residue at the ape of PPII helix, which interacts simultaneously with both of the tandem SH3 domains in the wild-type, moved toward C-SH3. Furthermore, interaction energies of the cytoplasmic region of p22phox with C-SH3 tend to decrease in these mutants. All these findings led us to conclude that interactions between N-SH3 of p47phox and PPII helix, which is formed by cytoplasmic region of p22phox, may play a significant role in the activation of the NADPH oxidase.  相似文献   

4.
NADPH oxidases (Nox) are a primary source of reactive oxygen species (ROS), which function in normal physiology and, when overproduced, in pathophysiology. Recent studies using mice deficient in Nox2 identify this isoform as a novel target against Nox2-implicated inflammatory diseases. Nox2 activation depends on the binding of the proline-rich domain of its heterodimeric partner p22phox to p47phox. A high-throughput screen that monitored this interaction via fluorescence polarization identified ebselen and several of its analogs as inhibitors. Medicinal chemistry was performed to explore structure-activity relationships and to optimize potency. Ebselen and analogs potently inhibited Nox1 and Nox2 activity but were less effective against other isoforms. Ebselen also blocked translocation of p47phox to neutrophil membranes. Thus, ebselen and its analogs represent a class of compounds that inhibit ROS generation by interrupting the assembly of Nox2-activating regulatory subunits.  相似文献   

5.
This study evaluated the anti-ascites effect of total diterpenoids extracted from Euphorbiae ebracteolatae Radix (TDEE) on malignant ascitic mice and elucidated its underlying mechanism. TDEE was extracted by dichloromethane and subjected to column chromatography. The purity of six diterpenoids isolated from TDEE was determined to be 77.18% by HPLC. TDEE (3 and 0.6 g raw herbs/kg, p.o.) reduced ascites and increased urine output. Meanwhile, analysis of tumor cell viability, cycle and apoptosis indicated that TDEE had no antitumor activity. In addition, the expression levels of aquaporins (AQPs) and the membrane translocation levels of protein kinase C (PKC) α and PKCβ in kidney and cells were measured. TDEE reduced the levels of AQP1–4, and inhibited PKCβ expression in membrane fraction. Four main diterpenoids, except compound 2, reduced AQP1 level in human kidney-2 cells. Compounds 4 and 5 inhibited AQP2–4 expression in murine inner medullary collecting duct cells. The diterpenoid-induced inhibition of AQP1–4 expression was blocked by phorbol-12-myristate-13-acetate (PMA; agonist of PKC). The diterpenoids from TDEE are the main anti-ascites components. The anti-ascites effect of diterpenoids may be associated with alterations in AQPs in the kidneys to promote diuresis. The inhibition of AQP1–4 expression by TDEE is related to the inhibition of PKCβ activation.  相似文献   

6.
The NADPH oxidase enzyme complex, NOX2, is responsible for reactive oxygen species production in neutrophils and has been recognized as a key mediator of inflammation. Here, we have performed rational design and in?silico screen to identify a small molecule inhibitor, Phox-I1, targeting the interactive site of p67(phox) with Rac GTPase, which is a necessary step of the signaling leading to NOX2 activation. Phox-I1 binds to p67(phox) with a submicromolar affinity and abrogates Rac1 binding and is effective in inhibiting NOX2-mediated superoxide production dose-dependently in human and murine neutrophils without detectable toxicity. Medicinal chemistry characterizations have yielded promising analogs and initial information of the structure-activity relationship of Phox-I1. Our studies suggest the potential utility of Phox-I class inhibitors in NOX2 oxidase inhibition and present an application of rational targeting of a small GTPase-effector interface.  相似文献   

7.
Osteoarthritis (OA) is a complex disease characterized by structural, functional, and metabolic deteriorations of the whole joint and periarticular tissues. In the current study, we aimed to investigate the possible effects of tempol on knee OA induced by the chemical chondrotoxic monosodium iodoacetate (MIA) which closely mimics both the pain and structural changes associated with human OA. Rats were administrated oral tempol (100 mg/kg) one week post-MIA injection (3 mg/50 μL saline) at the right knee joints for 21 consecutive days. Tempol improved motor performance and debilitated the MIA-related radiological and histological alterations. Moreover, it subsided the knee joint swelling. Tempol decreased the cartilage degradation-related biomarkers as matrix metalloproteinase-13, bone alkaline phosphatase (bone ALP), and fibulin-3. The superoxide dismutase mimetic effect of tempol was accompanied by decreased NADPH oxidase 4 (NOX4), inflammatory mediators, nuclear factor-kappa B (NF-κB), over-released transforming growth factor-β1 (TGF-β1). Tempol decreased the expression of chemokine (C-C motif) ligand 2 (CCL2). On the molecular level, tempol reduced the phosphorylated protein levels of p38 mitogen-activated protein kinase (MAPK), and small mother against decapentaplegic 3 homologs (SMAD3). These findings suggest the promising role of tempol in ameliorating MIA-induced knee OA in rats via collateral suppression of the catabolic signaling cascades including TGF-β1/SMAD3/NOX4, and NOX4/p38MAPK/NF-κB and therefore modulation of oxidative stress, catabolic inflammatory cascades, chondrocyte metabolic homeostasis.  相似文献   

8.
9.
Water lily (Nuphar) bioactive extracts have been widely used in traditional medicine owing to their multiple applications against human ailments. Phyto-active Nuphar extracts and their purified and synthetic derivatives have attracted the attention of ethnobotanists and biochemists. Here, we report that 6,6′-dihydroxythiobinupharidine (DTBN), purified from extracts of Nuphar lutea (L.) Sm. leaves, is an effective inhibitor of the kinase activity of members of the protein kinase C (PKC) family using in vitro and in silico approaches. We demonstrate that members of the conventional subfamily of PKCs, PKCα and PKCγ, were more sensitive to DTBN inhibition as compared to novel or atypical PKCs. Molecular docking analysis demonstrated the interaction of DTBN, with the kinase domain of PKCs depicting the best affinity towards conventional PKCs, in accordance with our in vitro kinase activity data. The current study reveals novel targets for DTBN activity, functioning as an inhibitor for PKCs kinase activity. Thus, this and other data indicate that DTBN modulates key cellular signal transduction pathways relevant to disease biology, including cancer.  相似文献   

10.
In women with preeclampsia (PE), endothelial cell (EC) dysfunction can lead to altered secretion of paracrine factors that induce peripheral vasoconstriction and proteinuria. This study examined the hypothesis that PE sera may directly or indirectly, through human umbilical vein ECs (HUVECs), stimulate phospholipase C-γ1-1,4,5-trisphosphate (PLC-γ1-IP3) signaling, thereby increasing protein kinase C-α (PKC-α) activity, collagen I expression and intracellular Ca2+ concentrations ([Ca2+]i) in human umbilical artery smooth muscle cells (HUASMCs). HUASMCs and HUVECs were cocultured with normal or PE sera before PLC-γ1 silencing. Increased PLC-γ1 and IP3 receptor (IP3R) phosphorylation was observed in cocultured HUASMCs stimulated with PE sera (P<0.05). In addition, PE serum significantly increased HUASMC viability and reduced their apoptosis (P<0.05); these effects were abrogated with PLC-γ1 silencing. Compared with normal sera, PE sera increased [Ca2+]i in cocultured HUASMCs (P<0.05), which was inhibited by PLC-γ1 and IP3R silencing. Finally, PE sera-induced PKC-α activity and collagen I expression was inhibited by PLC-γ1 small interfering RNA (siRNA) (P<0.05). These results suggest that vasoactive substances in the PE serum may induce deposition in the extracellular matrix through the activation of PLC-γ1, which may in turn result in thickening and hardening of the placental vascular wall, placental blood supply shortage, fetal hypoxia–ischemia and intrauterine growth retardation or intrauterine fetal death. PE sera increased [Ca2+]i and induced PKC-α activation and collagen I expression in cocultured HUASMCs via the PLC-γ1 pathway.  相似文献   

11.
p38α mitogen-activated protein kinase (MAPK) plays a role in several cellular processes and consequently has been a therapeutic target in inflammatory diseases, cancer, and cardiovascular disease. A number of known p38α MAPK inhibitors contain vicinal 4-fluorophenyl/4-pyridyl rings connected to either a 5- or 6-membered heterocycle. In this study, a small library of substituted thiophene-based compounds bearing the vicinal 4-fluorophenyl/4-pyridyl rings was designed using computational docking as a visualisation tool. Compounds were synthesised and evaluated in a fluorescence polarisation binding assay. The synthesised analogues had a higher binding affinity to the active phosphorylated form of p38α MAPK than the inactive nonphosphorylated form of the protein. 4-(2-(4-fluorophenyl)thiophen-3-yl)pyridine had a Ki value of 0.6 μm to active p38α MAPK highlighting that substitution of the core ring to a thiophene retains affinity to the enzyme and can be utilised in p38α MAPK inhibitors. This compound was further elaborated using a substituted phenyl ring in order to probe the second hydrophobic pocket. Many of these analogues exhibited low micromolar affinity to active p38α MAPK. The suppression of neonatal rat fibroblast collagen synthesis was also observed suggesting that further development of these compounds may lead to potential therapeutics having cardioprotective properties.  相似文献   

12.
Nutrition transition can be defined as shifts in food habits, and it is characterized by high-fat (chiefly saturated animal fat), hypercaloric and salty food consumption at the expense of dietary fibers, minerals and vitamins. Western dietary patterns serve as a model for studying the impact of nutrition transition on civilization diseases, such as obesity, which is commonly associated with oxidative stress and inflammation. In fact, reactive oxygen species (ROS) overproduction can be associated with nuclear factor-κB (NF-κB)-mediated inflammation in obesity. NF-κB regulates gene expression of several oxidant-responsive adipokines including tumor necrosis factor-α (TNF-α). Moreover, AMP-activated protein kinase (AMPK), which plays a pivotal role in energy homeostasis and in modulation of metabolic inflammation, can be downregulated by IκB kinase (IKK)-dependent TNF-α activation. On the other hand, adherence to a Mediterranean-style diet is highly encouraged because of its healthy dietary pattern, which includes antioxidant nutraceuticals such as polyphenols. Indeed, hydroxycinnamic derivatives, quercetin, resveratrol, oleuropein and hydroxytyrosol, which are well known for their antioxidant and anti-inflammatory activities, exert anti-obesity proprieties. In this review, we highlight the impact of the most common polyphenols from Mediterranean foods on molecular mechanisms that mediate obesity-related oxidative stress and inflammation. Hence, we discuss the effects of these polyphenols on a number of signaling pathways. We note that Mediterranean diet (MedDiet) dietary polyphenols can de-regulate nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) and NF-κB-mediated oxidative stress, and metabolic inflammation. MedDiet polyphenols are also effective in upregulating downstream effectors of several proteins, chiefly AMPK.  相似文献   

13.
Cell adhesion to stromal support and the associated intracellular signaling are central to drug resistance, therefore blocking both has been effective in increasing drug sensitization in leukemia. The stromal Ser/Thr protein kinase C (PKC) has been found to be important for conferring protection to leukemic cells. We aimed at elucidating the intracellular signals connected to cell adhesion and to stromal PKC. We found that NF-κB and Akt were up-regulated in mesenchymal stem cells (MSC) after binding of B-cell acute lymphoblastic leukemia (B-ALL) cells. Nevertheless, Akt inhibition did not induce B-ALL cell detachment. In spite of a clear activation of the NF-κB signaling pathway after B-ALL cell binding (up-regulation NF-κB1/2, and down-regulation of the IKBε and IKBα inhibitors) and an important reduction in cell adhesion after NF-κB inhibition, sensitization to the drug treatment was not observed. This was opposite to the PKC inhibitors Enzastaurin and HKPS, a novel chimeric peptide inhibitor, that were able to increase sensitization to dexamethasone, methotrexate, and vincristine. PLCγ1, Erk1/2, and CREB appear to be related to PKC signaling and PKC effect on drug sensitization since they were contra-regulated by HKPS when compared to dexamethasone-treated cells. Additionally, PKC inhibition by HKPS, but not by Enzastaurin, in MSC reduced the activity of three ABC transporters in leukemic cells treated with dexamethasone, a new indirect mechanism to increase sensitization to drug treatment in B-ALL cells. Our results show the validity of targeting the functional characteristic acquired and modulated during cell-to-cell interactions occurring in the leukemic niche.  相似文献   

14.
The dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is a novel, promising and emerging biological target for therapeutic intervention in neurodegenerative diseases, especially in Alzheimer’s disease (AD). The molMall database, comprising rare, diverse and unique compounds, was explored for molecular docking-based virtual screening against the DYRK1A protein, in order to find out potential inhibitors. Ligands exhibiting hydrogen bond interactions with key amino acid residues such as Ile165, Lys188 (catalytic), Glu239 (gk+1), Leu241 (gk+3), Ser242, Asn244, and Asp307, of the target protein, were considered potential ligands. Hydrogen bond interactions with Leu241 (gk+3) were considered key determinants for the selection. High scoring structures were also docked by Glide XP docking in the active sites of twelve DYRK1A related protein kinases, viz. DYRK1B, DYRK2, CDK5/p25, CK1, CLK1, CLK3, GSK3β, MAPK2, MAPK10, PIM1, PKA, and PKCα, in order to find selective DYRK1A inhibitors. MM/GBSA binding free energies of selected ligand–protein complexes were also calculated in order to remove false positive hits. Physicochemical and pharmacokinetic properties of the selected six hit ligands were also computed and related with the proposed limits for orally active CNS drugs. The computational toxicity webserver ProTox-II was used to predict the toxicity profile of selected six hits (molmall IDs 9539, 11352, 15938, 19037, 21830 and 21878). The selected six docked ligand–protein systems were exposed to 100 ns molecular dynamics (MD) simulations to validate their mechanism of interactions and stability in the ATP pocket of human DYRK1A kinase. All six ligands were found to be stable in the ATP binding pocket of DYRK1A kinase.  相似文献   

15.
Ganoderma lucidum extract is a potent traditional remedy for curing various ailments. Drying is the most important postharvest step during the processing of Ganoderma lucidum. The drying process mainly involves heat (36 h at 60 °C) and freeze-drying (36 h at −80 °C). We investigated the effects of different postharvest drying protocols on the metabolites profiling of Ganoderma lucidum using GC-MS, followed by an investigation of the anti-neuroinflammatory potential in LPS-treated BV2 microglial cells. A total of 109 primary metabolites were detected from heat and freeze-dried samples. Primary metabolite profiling showed higher levels of amino acids (17.4%) and monosaccharides (8.8%) in the heat-dried extracts, whereas high levels of organic acids (64.1%) were present in the freeze-dried samples. The enzymatic activity, such as ATP-citrate synthase, pyruvate kinase, glyceraldehyde-3-phosphatase dehydrogenase, glutamine synthase, fructose-bisphosphate aldolase, and D-3-phosphoglycerate dehydrogenase, related to the reverse tricarboxylic acid cycle were significantly high in the heat-dried samples. We also observed a decreased phosphorylation level of the MAP kinase (Erk1/2, p38, and JNK) and NF-κB subunit p65 in the heat-dried samples of the BV2 microglia cells. The current study suggests that heat drying improves the production of ganoderic acids by the upregulation of TCA-related pathways, which, in turn, gives a significant reduction in the inflammatory response of LPS-induced BV2 cells. This may be attributed to the inhibition of NF-κB and MAP kinase signaling pathways in cells treated with heat-dried extracts.  相似文献   

16.
Alzheimer’s disease (AD) is the most common cause of dementia worldwide. Despite extensive research and targeting of the main molecular components of the disease, beta-amyloid (Aβ) and tau, there are currently no treatments that alter the progression of the disease. Here, we examine the effects of two specific kinase inhibitors for calcium/calmodulin-dependent protein kinase type 1D (CaMK1D) on Aβ-mediated toxicity, using mouse primary cortical neurons. Tau hyperphosphorylation and cell death were used as AD indicators. These specific inhibitors were found to prevent Aβ induced tau hyperphosphorylation in culture, but were not able to protect cells from Aβ induced toxicity. While inhibitors were able to alter AD pathology in cell culture, they were insufficient to prevent cell death. With further research and development, these inhibitors could contribute to a multi-drug strategy to combat AD.  相似文献   

17.
Epidermal growth factor receptor (EGFR) is an intensively focused target for anti-tumor compounds used in non-small cell lung cancer (NSCLC) therapy. Compared to the classical activating mutations, there are still many uncommon EGFR mutations associated with poorer responses to EGFR inhibitors. A detailed understanding of the molecular basis for multiple EGFR mutants exhibiting diverse responses to inhibitors is of critical importance for related drug development. Herein, we explored the molecular determinants contributing to the distinct responses of EGFR with a single rare mutation (G719S) or combined mutations (G719S/L858R and G719S/l861Q) to Gefitinib (IRE). Our results indicated that interactions, formed within the tetrad of residues S768 (in the αC-helix), D770 (in the αC-β4 loop), Y827 (in the αE-helix), and R831 (in the catalytic loop), play an important role in the stability of αC-helix and the maintenance of K745–E762 salt bridge in the absence of IRE, which are weakened in the EGFRG719S system and enhanced in the EGFRG719S/L858R system upon IRE binding. Besides, the introduced hydrogen bonds by the co-occurring mutation partner also contribute to the stability of αC-helix. The work done for inhibitor dissociation suggests that IRE exhibits a stronger binding affinity to EGFRG719S/L858R mutant. Together, these findings provide a deeper understanding of minor mutations, which is essential for drug development targeting EGFR with less common mutations.  相似文献   

18.
Angiotensin II (Ang II) stimulates migration of vascular smooth muscle cell (VSMC) in addition to its contribution to contraction and hypertrophy. It is well established that Rho GTPases regulate cellular contractility and migration by reorganizing the actin cytoskeleton. Ang II activates Rac1 GTPase, but its upstream guanine nucleotide exchange factor (GEF) remains elusive. Here, we show that Ang II-induced VSMC migration occurs in a βPIX GEF-dependent manner. βPIX-specific siRNA treatment significantly inhibited Ang II-induced VSMC migration. Ang II activated the catalytic activity of βPIX towards Rac1 in dose- and time-dependent manners. Activity reached a peak at 10 min and declined close to a basal level by 30 min following stimulation. Pharmacological inhibition with specific kinase inhibitors revealed the participation of protein kinase C, Src family kinase, and phosphatidylinositol 3-kinase (PI3-K) upstream of βPIX. Both p21-activated kinase and reactive oxygen species played key roles in cytoskeletal reorganization downstream of βPIX-Rac1. Taken together, our results suggest that βPIX is involved in Ang II-induced VSMC migration.  相似文献   

19.
20.
An F-box protein, β-TrCP recognizes substrate proteins and destabilizes them through ubiquitin-dependent proteolysis. It regulates the stability of diverse proteins and functions as either a tumor suppressor or an oncogene. Although the regulation by β-TrCP has been widely studied, the regulation of β-TrCP itself is not well understood yet. In this study, we found that the level of β-TrCP1 is downregulated by various protein kinase inhibitors in triple-negative breast cancer (TNBC) cells. A PI3K/mTOR inhibitor PI-103 reduced the level of β-TrCP1 in a wide range of TNBC cells in a proteasome-dependent manner. Concomitantly, the levels of c-Myc and cyclin E were also downregulated by PI-103. PI-103 reduced the phosphorylation of β-TrCP1 prior to its degradation. In addition, knockdown of β-TrCP1 inhibited the proliferation of TNBC cells. We further identified that pharmacological inhibition of mTORC2 was sufficient to reduce the β-TrCP1 and c-Myc levels. These results suggest that mTORC2 regulates the stability of β-TrCP1 in TNBC cells and targeting β-TrCP1 is a potential approach to treat human TNBC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号