首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The specific heat of single-crystal Rb2KScF6 is measured using ac calorimetry in the range 4–280 K. The results are discussed in the context of a group-theoretical analysis of possible distortions of the elpasolite structure and of experimental data obtained earlier with an adiabatic calorimeter in a narrower temperature region.  相似文献   

2.
Raman scattering spectra of elpasolite Rb2KScF6 are studied in a wide temperature range including two phase transitions: from the cubic to the tetragonal phase and then to the monoclinic phase. The experimental Raman scattering spectrum is compared with the lattice vibration spectra of these phases calculated using an ab initio approach. A number of anomalies (caused by structural rearrangement during the phase transitions) are revealed and quantitatively analyzed in the ranges of both the intramolecular vibrations of the octahedron molecular ScF6 ions and low-frequency intermolecular lattice vibrations. The interaction between low-frequency intramolecular vibrations and the intermolecular modes is found to be significant, and strong resonance interaction of the rotational soft modes (which are recovered below the phase transition points) with hard low-frequency vibrations of the rubidium ion sublattice is detected. These interactions are shown to substantially complicate the spectra.  相似文献   

3.
The structures of two phases of the (NH4)3Nb(O2)2F4 crystal, namely, the parent cubic phase and the most distorted low-temperature phase, have been determined from data of an X-ray diffraction experiment performed for a powder sample. The profile and structural parameters have been refined according to the procedure implemented in the DDM program. The results obtained have been discussed with invoking the group-theoretical analysis of the complete order parameter condensate, which takes into account the critical and noncritical atomic displacements and allows the interpretation of the obtained experimental data. It has been found that the most probable sequence of structural transformations occurring in the crystal can be schematically represented in the following form:
_boxclose_boxclose_boxclose_boxclose_boxclose_boxclose_boxclose_boxclose] _5^ + (11 - 7)C2/mP2_1 /m #xA; P2_1 /n. #xA; #xA;\begin{gathered} Fm\bar 3m\xrightarrow[{(\eta 1,\eta 1,\eta )}]{{\Gamma _5^ + (11 - 7)}}C2/m\xrightarrow[{(\eta 1,\eta 1,\eta )(0,0,0,0,0,\xi ,0 - \xi ,0,0,0,0)}]{{\Gamma _5^ + (11 - 7) \otimes \Sigma _2 (4 - 2)}}P2_1 /m \hfill \\ \xrightarrow[{(\eta 1,\eta 1,\eta )(0,0,0,0,0,\xi ,0 - \xi ,0,0,0,0)(0,0,0,0,0,\varepsilon ,0,\varepsilon ,0,0,0,0)}]{{\Gamma _5^ + (11 - 7) \otimes \Sigma _2 (4 - 2) \otimes \Sigma _3 (4 - 3)}}P2_1 /n. \hfill \\ \end{gathered}   相似文献   

4.
Raman scattering in Rb2TeBr6 and Cs2TeBr6 crystals is studied. The phonon spectra of the crystals are calculated using the factor group method. The number of Raman-active modes, their symmetries, and selection rules are found. Observed Raman spectrum lines are identified with atomic vibration modes of the crystal.  相似文献   

5.
The parameters of the long-wavelength exciton band for Rb2CdI4 films are investigated in the temperature range 90–410 K. It is found that the Rb2CdI4 films undergo a sequence of phase transitions at temperatures Tc1=380 K (paraphase → incommensurate phase), Tc2=290 K (incommensurate phase → ferroelastic phase I), and Tc3 = 210 K (ferroelastic phase I → ferroelastic phase II). The parameters of the exciton band (such as the spectral position and the half-width) measured during heating and cooling of the Rb2CdI4 film differ significantly. This is especially true for the incommensurate phase. Upon heating of the incommensurate phase, the domain boundaries become frozen, whereas the cooling of this phase is accompanied by the generation of solitons and their pinning, which, in turn, results in a first-order phase transition at the temperature Tc2. It is revealed that the oscillator strength of the exciton band anomalously increases in the range of existence of commensurate phase I (Tc3<-T<-Tc2) due to ordering of the Rb2CdI4 crystal lattice.  相似文献   

6.
We have studied the formation of the molecular ion Rb2+ and the atomic ion Rb+. These are created in laser excited rubidium vapor at the first resonance, 5s–5p and 5p-nl transitions. A theoretical model is applied to this interaction to explain the time evolution and the laser-power dependence of the population density of Rb+ and Rb2+. A set of rate equations which describe: the temporal variation of the population density of the excited states; the atomic ion density; and the electron density, were solved numerically under the experimental conditions of Barbier and Cheret. In their experiment the Rb concentration was 1×1013cm−3 and the laser power was taken to be 50–500 mW at vapor temperature = 450 K. The results showed that the main processes for producing Rb2+ are associative ionization and Hornbeck-Molnar ionization. The calculations have also showed that, the atomic ions Rb+ are formed through the Penning Ionization (PI) and photoionization processes. Moreover, a reasonable agreement between the experimental results and our calculations for the ion currents of the Rb+ and Rb2+ is obtained.   相似文献   

7.
Thin films of M2CdI4 ferroelectrics (M=Cs, Rb) of orthorhombic structure were synthesized, and their electronic optical spectrum was studied. It was established that both compounds belong to direct-gap dielectrics and that their low-frequency excitons are localized on a sublattice made up of (CdI4)2? tetrahedra. The temperature dependence of the exciton band parameters was studied for Cs2CdI4 within the temperature interval 90–420 K. The phase transitions occurring in this interval manifest themselves as breaks in the temperature behavior of the band spectral positions and weak peaks in the halfwidth and oscillator strength.  相似文献   

8.
The thermophysical properties of oxyfluoride (NH4)3NbOF6 were studied in detail over wide ranges of temperatures and pressures. At atmospheric pressure, a sequence of four structural phase transitions was established with the following changes in entropy: ΔS 1 = Rln 2.7, δS 2 = Rln38.3, ΔS 3 = 0.08R, and ΔS 4 = 0.17R. An external hydrostatic pressure was found to narrow the region of existence of the initial cubic phase. A triple point was detected in the p-T diagram; at a pressure above 0.07 GPa, the transition between the tetragonal and monoclinic phases occurs through a distorted high-pressure phase.  相似文献   

9.
N. Nouiri  K. Jaouadi  N. Zouari  T. Mhiri 《Ionics》2017,23(6):1461-1470
The Rb3(HSeO4)2.5(H2PO4)0.5 compound was prepared and its thermal behavior and electric properties were investigated. The thermogravimetry (TGA) analysis and the differential scanning calorimetric (DSC) show the presence of a structural phase transition of the title compounds at 374 K which is confirmed by the variation of fp and σdc as a function of temperature. The complex impedance of the Rb3(HSeO4)2.5(H2PO4)0.5 compound has been investigated in the temperature range of 295–453 K and in the frequency range 209 Hz–1 MHz. The impedance plots show semicircle arcs at different temperatures, and an electrical equivalent circuit has been proposed to explain the impedance results. The circuits consist of the parallel combination of bulk resistance Rp and constant phase elements CPE1 in series with fractal capacity CPE2. The frequency dependence of the conductivity is interpreted in terms of Jonscher’s law. The conductivity dc follows the Arrhenius relation. The near value of activation energies obtained from the analysis of modulus, conductivity data, and circuit equivalent confirm that the transport is through the ion hopping mechanism, dominated by the motion of the H+ proton in the structure of the investigated materials.  相似文献   

10.
We have used x-ray photoelectron spectroscopy to investigate the charge state of oxygen found in the basal structural plane of YBa2Cu3O6+γ.. We have observed a change in this state after thermal treatment, with a transition to the adjacent structural phase region. We have shown that changes in the charge state of oxygen can be used as an indicator of structural changes occurring in YBa2Cu3O6+δ.. We have found that the rate of structural relaxation yttrium barium cuprate depends on the amount of structural water it contains. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 74, No. 2, pp. 195–198, March–April, 2007.  相似文献   

11.
According to the results of calorimetric and structural studies, the Fm{ie1202-1}m phase in K2NaMoO3F3 remains stable at least to 100 K. No ferroelectric transformation assumed earlier has been revealed in a series of Rb2KMoO3F3 samples prepared using various technologies. Only a phase transition of nonferroelectric origin has been observed near 195 K, and its thermodynamic characteristics have been determined. An analysis of the stability of the cubic structure of molybdenum fluorine-oxygen elpasolites-cryolites has been performed in the framework of the hypothesis on strengths of interatomic bonds. The barocaloric effect in Rb2KMoO3F3 has been estimated.  相似文献   

12.
The exciton absorption spectra of thin films of (Cs1 − x Rb x )2CdI4 solid solutions have been investigated and the refractive index n(λ) in their transparency window in the concentration range of 0 ≤ x ≤ 1 has been measured. The exciton-band parameters and optical permittivity ɛ(x) have been found to linearly depend on the concentration. It is established that excitons are incorporated into the CdI2 sublattice of the solid solutions and belong to intermediate-coupling ones. The characteristics of excitons in ferroelastics are compared with the corresponding parameters for CdI2, RbI, and CsI, which are used as components to synthesize ternary compounds.  相似文献   

13.
The dspersion dielectric permeability and ion conductivity of La2Mo2O9 ceramics was studied. It was established that the observed low-frequency dielectric dispersion is due to relaxation effects related to high ion conductivity. It is shown that the phase transition in La2Mo2O9 has characteristic features of a superionic phase transition.  相似文献   

14.
The tetragonal compound UNi2Si2 exhibits in zero magnetic field three different antiferromagnetic phases belowT N =124 K. They are formed by ferromagnetic basal planes, which are antiferromagnetically coupled along thec-axis with the propagation vectorq=(0, 0, q z ). Two additional order-order magnetic phase transitions are observed below T N , namely atT 1=108 K and T 2=40 K in zero magnetic field. All three phases exhibit strong uniaxial anisotropy confining the U moments to a direction parallel to the c-axis. UNi2Si2 single crystals were studied in detail by measuring bulk thermodynamic properties, such as thermal expansion, resistivity, susceptibility, and specific heat. A microscopic study using neutron diffraction was performed in magnetic fields up to 14.5 T parallel to the c-axis, and a complex magnetic phase diagram has been determined. Here, we present the analysis of specific-heat data measured in magnetic fields up to 14 T compared with the results of the neutron-diffraction study and with other thermodynamic properties of UNi2Si2.  相似文献   

15.
The structural changes induced by a 9-GPa pressure in Eu2(MoO4)3 single crystals at room temperature have been studied using x-ray diffraction. It is established that a structural phase transition from the initial tetragonal phase to the new high-pressure tetragonal phase occurs rather than solid-phase amorphization that was observed previously in polycrystalline samples. The samples in the observed transition remain single-crystalline despite a significant difference (ΔV ~ 18%) between the specific volumes of the initial and final phases. It is shown that the transition from the initial state to the high-pressure phase occurs via the formation of broad transition zones featuring a continuous and smooth change of the crystal lattice parameters.  相似文献   

16.
Cascade of phase transitions in GdFe3(BO3)4 at 156, 37, and 9 K has been detected by specific heat measurements and further studied by Raman scattering and Nd3+ spectroscopic probe method. A weakly first-order structural phase transition at 156 K is followed by a second-order antiferromagnetic ordering phase transition at 37 K and a first-order spin-reorientational phase transition at 9 K.  相似文献   

17.
The evolution of optical absorption in a two-dimensional antiferromagnet is investigated in the range of the transition 6A1g4A1g, 4E g (4G) observed in manganese ions in an external magnetic field inducing noncollinearity of the magnetic structure. It is revealed that hot and cold satellites of the exciton-magnon bands appear in the optical absorption spectrum and then increase in intensity. The shapes of the magnon satellite bands corresponding to a two-dimensional magnetic structure are calculated. It is demonstrated that magnons at the inner points of the Brillouin zone appreciably contribute to the absorption. The zero-point magnetic oscillations play a decisive role in the absorption associated with the magnon decay at low temperatures.  相似文献   

18.
Optical absorption spectra in thin [N(CH3)4]2CuCl4 crystals in the thickness range 10 μm ≤ d < 100 μm have been studied. Strengthening of the crystal field has been found with a decrease in the [N(CH3)4]2CuCl4 crystal size. The reasons for absorption band shifts in the visible region depending on the [N(CH3)4]2CuCl4 crystal thickness and the manifestation of a size effect in crystals with an incommensurate superstructure are discussed.  相似文献   

19.
The magnetic, magnetoelectric, and magnetoelastic properties of ErMn2O5 single crystals have been studied at low temperatures and strong magnetic fields (up to 250 kOe) and compared to the analogous results obtained previously for YMn2O5. Based on these data, the possible mechanisms of various spontaneous and magnetic-field-induced phase transitions in these compounds are considered within the framework of the theory of representations of the Pbam-D 2h 9 space group. It is shown that a biquadratic exchange plays an important role in the formation (and mutual transformation) of magnetic structures revealed by neutron diffraction in the RMn2O5 oxide family.  相似文献   

20.
A series of new heterofullerides with compositions Rb2MC60, K2MC60, and KM2C60 (M = Mg, Be) have been synthesized. Measurements of the temperature dependences of the magnetic susceptibility in the temperature interval from 4.2 to 300 K reveal a superconducting transition in heterofullerides K2MgC60, KMg2C60, K2BeC60, and Rb2BeC60 at temperatures T c = 13–22 K. The electron states with uncompensated spin are studied by the electron paramagnetic resonance technique. The contributions of conduction electrons and localized electrons to the paramagnetic susceptibility are extracted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号