首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multiscale reliability places priority on the shifting of space-time scale while dual-scale reliability concentrates on time limits. Both can be ranked by applying the principle of least variance, although the prevailing criteria for assessment may differ. The elements measuring reliability can be ideally assumed to be non-interactive or interactive as a rule. Different formulations of the latter can be adopted to yield weak, strong, and mixed reliability depending on the application. Variance can also be referred to the average based on the linear sum, the root mean square, or otherwise. Preference will again depend on the physical system under consideration. Different space-time scale ranges can be chosen for the appropriate time span to failure. Up to now, only partial validation can be made due to the lack of lower scale data that are generated theoretically.A set of R-integrals is defined to account for the evolution effects by way of the root functions from Ideomechanics. The approach calls for a “pulsating mass” model that can connect the physical laws for the small and large bodies, including energy dissipation at all scale level. Non-linearity is no longer an issue when characterization of matter is made by the multiscaling of space-time. Ordinary functions can also be treated with minor modifications.The key objective is not to derive new theories, but to explain the underlying physics of existing test data, and the reliability of diversified propositions for predicting the time span to failure. Present and past investigations have remained at the micro-macro or mi-ma scale range for several decades due to the inability to quantify lower scale data. To this end, the available mi-ma fatigue crack growth data are used to generate those at the na-mi and pi-na scale ranges. Reliability variances are computed for the three different scale ranges, covering effects from the atomic to the macroscopic scale. They include the initial crack or defect length and velocities. Specimen with large initial defects are found to be more reliable. This trend also holds for each of the na-mi and pi-na scale range. Also, large specimen data had smaller reliability variances than the smaller specimens making them more reliable. Variances for the nano- and pico-scale range had much more scatter and were diversified. Uncertainties and un-reliabilities at the atomic and sub-atomic scale are no doubt related, although their connections remain to be found.Reliability with high order precisions are also defined for multi-component systems that can involve trillions of elements at the different scale ranges. Such large scale computations are now within reach by the advent of super-speed computers, especially when reliability, risk, and among other factors may have to be considered simultaneously.  相似文献   

2.
The principle of least variance is applied to evaluate the reliability of the design conditions of the Runyang cable-stayed bridge. Monitored fatigue load in service data are analyzed in conjunction with the specimen fatigue crack growth data for bridge steel. Aside from size differences, the interactive effects of material behavior with load amplitude and frequency would vary with the depicted physical model for the reliability of life prediction. Based on the same crack growth history in time or cycle, the two choice selected for comparison are stress intensity factor (SIF) range, and the strain energy density (SED) range. Reliability is found to depend on the trade off between load amplitude and frequency. Considered are high-amplitude; low-frequency and low-amplitude; high-frequency. In each case, the chances are the reliable time span of fatigue crack growth will not coincide with the useful portion of bridge life, simply because the load frequency must be anticipated as an educated estimate. It is subject to change. Conversion of the crack length fatigue cycle history to the corresponding time history requires the specification of load frequency that can set the time span of the useful life. This is demonstrated for the Runyang bridge, where approximately 30 MPa and 8 MPa would correspond to the high and low fatigue load, respectively.Significant variances were found for the SIF and SED models. The difference can be attributed to the inclusion of the mean stress in the SED that is more forgiving since it accounts for both the stress and strain effects, in contrast to the SIF model that leaves out the strain and the mean stress. Since the principle of least variance refers to the average of the R-integrals, the results based on the linear sum (LS) and root mean square (RMS) will differ quantitatively, but not qualitatively. The obvious mismatch of the fatigue load used to determine the material property and that for the bridge design can be adjusted and absorbed into the appropriate choice for the load frequency, a compensating factor not realized up to now. To this end, the weighted functions in the R-integrals further emphasize long run effects of the least variance reliability analysis. Attention is called to Changeability in addition to determinability and probability for predicting the time to failure. That is to better anticipate the change in the fatigue load frequency, to which the assistance of health monitoring should provide.  相似文献   

3.
The energy release rate criterion, being mono scale by definition, is incompatible with the failure behavior of solids that are inherently dual, if not, multiscale. Time span of reliability is scale sensitive and can be addressed with consistency only by use of transitional functions that are designed to transform a function from one scale to another. A pseudo transitional energy release rate G is defined to address the cross-scaling properties of energy release rate. The reliability of such a function is found to fall quickly when the scale range deviates from that of micro-macro. In general, the time span of reliability based on G* shortens considerably within the nano-micro and pico-nano scale ranges, resulting in fast turnover of system usability. Prediction accuracy tends to be scale range specific. Stress or strain based criteria are also mono scale. They may be adequate for some situations at the macroscopic scale, but can be ambiguous for multiscale problems. These situations are analyzed by application of the principle of least variance in conjunction with the R-integrals.Accelerated test data for the equivalent of 20 years’ fatigue crack growth in 2024-T3 aluminum panels were analyzed using the mutliscale reliability model. A time span plateau within the micro-macro range is from 8 to 17 years. This corresponds to the reliable portion of prediction, while the terminal 3 years are regarded as unreliable. A similar time span plateau were also found from 4 to 6 years within the nano-micro scale range. And an even smaller plateau hovering around 1.2 years were found for the pico-nano scale range. Time span of reliable prediction narrows with down sized scale range. The overlapping ends of the scale ranges are rendered unreliable as anticipated. These regions can be suppressed by the addition of meso scale ranges. Reference can be made to past discussions related to multiscaling and mesomechanics.  相似文献   

4.
5.
The speed of Rayleigh surface waves, denoted CR, is the accepted upper limit for Mode I crack velocity in monolithic solids. In the current contribution, we discuss several critical issues associated with the velocity of Rayleigh surface waves and crack velocity in single crystal (SC) brittle solids, and the global and local influence of CR on crack path selection in particular.Recent cleavage experiments in SC silicon showed that crack velocity at certain cleavage planes and crystallographic orientations cannot exceed a small fraction of CR, and thereafter the crack deflects to other cleavage planes. Indeed, CR defined by the continuum mechanics ignores atomistic phenomena occurring during rapid crack propagation, and therefore is limited in predicting the crack velocity. Examination of these anomalies shows that this limitation lies in microstructural lattice arrangement and in anisotropic phonon radiation during rapid crack propagation. Globally, CR has no influence on the crack deflection phenomenon. However, the misfit in CR between the original plane of propagation and the deflected plane generates local instabilities along the deflection zone.  相似文献   

6.
A method to determine acoustic emission of surface waves from a crack near the free edge of a plate, is presented, in terms of the function f(t), which defines the time dependence of the crack opening process, the crack opening volume per unit thickness of the plate, and the elastic constants of the plate. The determination of the time-varying displacement is based on the use of equivalent body forces, which are shown to be two double forces. The acoustic emission of the crack, or the equivalent radiation from the double forces, has been obtained by a novel use of the elastodynamic reciprocity theorem. It is of interest that the normal surface-wave displacement at a position x0 of the free edge comes out as depending on df/dt evaluated at x0 for t > x0/cR, where cR is the velocity of surface waves on the free edge.  相似文献   

7.
This paper examines the results of an extensive test program undertaken to study crack growth in D6ac steel and shows that in each case the increment in the crack length per cycle (da/dN) conforms to the Generalised Frost-Dugdale crack growth law. This is found to be true for both constant Kmax, constant R ratio load increasing, and compression-compression pre-cracking tests in the L-T, T-L and the S-T directions.  相似文献   

8.
Reynolds number dependence of mixed structure functions of longitudinal velocity u and temperature Θ is examined over a R λ (Taylor microscale Reynolds number) range of 180-5950 for four flows. It is found that the mixed structure functions exhibit some behaviours similar to those of individual ones of the velocity and temperature. The prediction of the bivariate lognormal model for the R λ dependence of the mixed structure functions is approached by the present measurements only at very high R λ. At values of the longitudinal separation r close to the integral length scale as well as Taylor microscale, the velocity and temperature increments are not statistically independent. Several methods have been used to estimate the intermittency exponents μ and μΘ of the velocity and temperature in the lognormal model. Each method yields a different value of μ and μΘ, which also depend on R λ and the type of flows. The present measurements suggest that the best estimates for μ and μΘ are 0.25 ± 0.05 and 0.30 ± 0.05, respectively.  相似文献   

9.
When a fatigue crack is nucleated and propagates into the vicinity of the notch, the crack growth rate is generally higher than that can be expected by using the stress intensity factor concept. The current study attempted to describe the crack growth at notches quantitatively with a detailed consideration of the cyclic plasticity of the material. An elastic–plastic finite element analysis was conducted to obtain the stress and strain histories of the notched component. A single multiaxial fatigue criterion was used to determine the crack initiation from the notch and the subsequent crack growth. Round compact specimens made of 1070 steel were subjected to Mode I cyclic loading with different R-ratios at room temperature. The approach developed was able to quantitatively capture the crack growth behavior near the notch. When the R-ratio was positive, the crack growth near a notch was mainly influenced by the plasticity created by the notch and the resulted fatigue damage during crack initiation. When the R-ratio was negative, the contact of the cracked surfaces during a part of a loading cycle reduced the cyclic plasticity of the material near the crack tip. The combined effect of notch plasticity and possible contact of cracked surface were responsible for the observed crack growth phenomenon near a notch.  相似文献   

10.
11.
An extension of the celebrated Paris law for crack propagation is given to take into account some of the deviations from the power-law regime in a simple manner using the Wöhler SN curve of the material, suggesting a more general “unified law”. In particular, using recent proposals by the first author, the stress intensity factor K(a) is replaced with a suitable mean over a material/structural parameter length scale Δa, the “fracture quantum”. In practice, for a Griffith crack, this is seen to correspond to increasing the effective crack length of Δa, similarly to the Dugdale strip-yield models. However, instead of including explicitly information on cyclic plastic yield, short-crack behavior, crack closure, and all other detailed information needed to eventually explain the SN curve of the material, we include directly the SN curve constants as material property. The idea comes as a natural extension of the recent successful proposals by the first author to the static failure and to the infinite life envelopes. Here, we suggest a dependence of this fracture “quantum” on the applied stress range level such that the correct convergence towards the Wöhler-like regime is obtained. Hence, the final law includes both Wöhler's and Paris’ material constants, and can be seen as either a generalized Wöhler's SN curve law in the presence of a crack or a generalized Paris’ law for cracks of any size.  相似文献   

12.
常幅载荷下结构元件断裂可靠度估算的应力强度因子模型   总被引:3,自引:0,他引:3  
给出了一个估算结构元件疲劳可靠度的应力强度因子模型,系统阐述了元件在常幅载荷下疲劳可靠性的分析方法。该模型研究了常幅载荷作用下材料瞬时裂纹长度和应力强度因子的分布形式,建立了应力强度因子与断裂韧性之间的干涉关系。对7075-T7351铝合金中心裂纹试件试验数据分析的结果表明:裂纹的瞬时扩展长度和可靠度的预测结果均与试验结果符合很好,本文给出的基于应力强度因子的可靠性分析模型是合理的。  相似文献   

13.
Based on mechanics of anisotropic material, the dynamic crack propagation problem of I/II mixed mode crack in an infinite anisotropic body is investigated. Expressions of dynamic stress intensity factors for modes I and II crack are obtained. Components of dynamic stress and dynamic displacements around the crack tip are derived. The strain energy density theory is used to predict the dynamic crack extension angle. The critical strain energy density is determined by the strength parameters of anisotropic materials. The obtained dynamic crack tip fields are unified and applicable to the analysis of the crack tip fields of anisotropic material, orthotropic material and isotropic material under dynamic or static load. The obtained results show Crack propagation characteristics are represented by the mechanical properties of anisotropic material, i.e., crack propagation velocity M and fiber direction α. In particular, the fiber direction α and the crack propagation velocity M give greater influence on the variations of the stress fields and displacement fields. Fracture angle is found to depend not only on the crack propagation but also on the anisotropic character of the material.  相似文献   

14.
Fracture occurs on multiple interacting length scales; atoms separate on the atomic scale while plasticity develops on the microscale. A dynamic multiscale approach (CADD: coupled atomistics and discrete dislocations) is employed to investigate an edge-cracked specimen of single-crystal nickel, Ni, (brittle failure) and aluminum, Al, (ductile failure) subjected to mode-I loading. The dynamic model couples continuum finite elements to a fully atomistic region, with key advantages such as the ability to accommodate discrete dislocations in the continuum region and an algorithm for automatically detecting dislocations as they move from the atomistic region to the continuum region and then correctly “converting” the atomistic dislocations into discrete dislocations, or vice-versa. An ad hoc computational technique is also applied to dissipate localized waves formed during crack advance in the atomistic zone, whereby an embedded damping zone at the atomistic/continuum interface effectively eliminates the spurious reflection of high-frequency phonons, while allowing low-frequency phonons to pass into the continuum region.The simulations accurately capture the essential physics of the crack propagation in a Ni specimen at different temperatures, including the formation of nano-voids and the sudden acceleration of the crack tip to a velocity close to the material Rayleigh wave speed. The nanoscale brittle fracture happens through the crack growth in the form of nano-void nucleation, growth and coalescence ahead of the crack tip, and as such resembles fracture at the microscale. When the crack tip behaves in a ductile manner, the crack does not advance rapidly after the pre-opening process but is blunted by dislocation generation from its tip. The effect of temperature on crack speed is found to be perceptible in both ductile and brittle specimens.  相似文献   

15.
This paper examines cracking in D6ac and 4340 steel along with Mil Annealed and STOA Ti-6Al-4V and finds that the data implies that in the Paris Region (Region II) of the crack growth curve there is only a minimal R ratio dependency. Presented is a theoretical basis for explaining this behaviour and suggest alternative ways for characterising crack growth prediction through the use of the Generalised Frost-Dugdale crack growth law. The Fatigue Damage Map method is then used to explain the physics behind this behaviour.  相似文献   

16.
17.
The objective is to investigate energy dissipation mechanisms that operate at different length scales during fracture in ductile materials. A dimensional analysis is performed to identify the sets of dimensionless parameters which contribute to energy dissipation via dislocation-mediated plastic deformation at a crack tip. However, rather than using phenomenological variables such as yield stress and hardening modulus in the analysis, physical variables such as dislocation density, Burgers vector and Peierls stress are used. It is then shown via elementary arguments that the resulting dimensionless parameters can be interpreted in terms of competitions between various energy dissipation mechanisms at different length scales from the crack tip; the energy dissipations mechanisms are cleavage, crack tip dislocation nucleation and also dislocation nucleation from a Frank-Read source. Therefore, the material behavior is classified into three groups. The first two groups are the well-known intrinsic brittle and intrinsic ductile behavior. The third group is designated to be extrinsic ductile behavior for which Frank-Read dislocation nucleation is the initial energy dissipation mechanism. It is shown that a material is predicted to exhibit extrinsic ductility if the dimensionless parameter disl1/2 (b is Burgers vector, ρdisl is dislocation density) is within a certain range defined by other dimensionless parameters, irrespective of the competition between cleavage and crack tip dislocation nucleation. The predictions compare favorably to the documented behavior of a number of different classes of materials.  相似文献   

18.
One of the basic mechanisms for fatigue crack growth in ductile metals is that depending on crack-tip blunting under tensile loads and re-sharpening of the crack-tip during unloading. In a standard numerical analysis accounting for finite strains it is not possible to follow this process during many cycles, as severe mesh distortion at the crack-tip results from the huge geometry changes developing during the cyclic plastic straining. In the present numerical studies, based on an elastic-perfectly plastic material model, crack growth computations are continued up to 200 full cycles by using remeshing at several stages of the plastic deformation. Three different values of the load ratio R=Kmin/Kmax are considered. It is shown that the crack-tip opening displacement, CTOD, typically undergoes a transient behaviour, with no crack closure during many cycles, before a steady-state cycling with crack closure at the tip starts to gradually develop.  相似文献   

19.
Thermo-electro-structural coupled analyses of crack arrest by Joule heating   总被引:2,自引:0,他引:2  
Using the finite element method, thermo-electro-structural coupled analyses of the cracked conducting plate under high electric current have been solved. The crack contact condition and temperature-dependent material properties are considered in this analysis. The crack tip temperature, electric current density factor, stress intensity factor and strain energy density factor are obtained for discussions. Due to high electric current density and Joule heating at the crack tip, a circular melting area may exist around the tip. After cooling, a circular void or hole may occur at the crack tip and the crack arrest is achieved. The crack tip temperature decreases when the crack contact area increases. The proper tensile load is necessary for making the crack open enough and causing high current density at the crack tip and associated crack arrest. On the other hand, the crack tip temperature increases with time by the increasing external current and Joule heating. The values of mode-I stress intensity factor and strain energy density factor decrease with time due to the thermal deformation around the crack tip. Because of the temperature-dependent resistivity, the variation of the electric current density factor is complicated. In addition, it is not easy to create a crack-arrest condition when the crack length relative to the plate width is too small.  相似文献   

20.
We present an empirical but simple and practical spectral chart method for determining the mean turbulent kinetic energy dissipation rate $ \left\langle \varepsilon \right\rangle $ in a variety of turbulent flows. The method relies on the validity of the first similarity hypothesis of Kolmogorov (C R (Doklady) Acad Sci R R SS, NS 30:301–305, 1941) (or K41) which implies that spectra of velocity fluctuations scale on the kinematic viscosity ν and $ \left\langle \varepsilon \right\rangle $ at large Reynolds numbers. However, the evidence, based on the DNS spectra, points to this scaling being also valid at small Reynolds numbers, provided effects due to inhomogeneities in the flow are negligible. The methods avoid the difficulty associated with estimating time or spatial derivatives of the velocity fluctuations. It also avoids using the second hypothesis of K41, which implies the existence of a ?5/3 inertial subrange only when the Taylor microscale Reynods number R λ is sufficiently large. The method is in fact applied to the lower wavenumber end of the dissipative range thus avoiding most of the problems due to inadequate spatial resolution of the velocity sensors and noise associated with the higher wavenumber end of this range.The use of spectral data (30?≤?R λ?≤?400) in both passive and active grid turbulence, a turbulent mixing layer and the turbulent wake of a circular cylinder indicates that the method is robust and should lead to reliable estimates of $ \left\langle \varepsilon \right\rangle $ in flows or flow regions where the first similarity hypothesis should hold; this would exclude, for example, the region near a wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号