首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reactivity of the dimeric cyclopalladated compounds derived from biphenyl-2-ylamine (μ-X)22-N2′,C1-1-Pd-2-{(2′-NH2C6H4)C6H4}]2 [X = OAc (1), X = Cl (2)] towards unsaturated organic molecules is reported. Compound 1 reacted with carbon monoxide and tbutyl isocyanide producing phenanthridin-6(5H)-one and N-tert-butylphenanthridin-6-amine in 63% and 88% yield, respectively. Compound 2 reacted separately with diphenylacetylene and 3-hexyne, affording the mononuclear organopalladium compounds [κ2-N2″,C12-C2,C3- 1-Pd{(R-CC-R)2-2′-(2″-NH2C6H4)C6H4}Cl] [R = Ph (5), R = Et (6)] in 50-60% yield, which derived from the insertion of two alkyne molecules into the C-Pd σ bonds of 2. The crystal structure of compounds 5 and 6 has been determined. Compound 5 crystallized in the monoclinic space group P21/n with a = 13.3290(10) Å, b = 10.6610(10) Å and c = 22.3930(10) Å and β = 100.2690(10)°. Compound 6 crystallized in the triclinic space group with a = 7.271(7) Å, b = 10.038(3) Å and c = 16.012(5) Å, and α = 106.79(3)°, β = 96.25(4)° and γ = 99.62(4)°. The crystal structures of 5 and 6 have short intermolecular Pd-Cl?H-N-Pd non-conventional hydrogen bonds, which associated the molecules in chains in the first case and in dimers in the second.  相似文献   

2.
Molecular photocatalysts allow for selectively tuning their function on a molecular level based on an in-depth understanding of their chemical and photophysical properties. This contribution reports the synthesis and photophysical characterization of the novel molecular photocatalyst [(tbbpy)2Ru(tpac)PdCl2]2+RutpacPd (with tpac = tetrapyrido[3,2-a:2′,3′-c:3″,2″-h:2?,3?-j]acridine) and its mononuclear building block. Furthermore, detailed photocatalytic activity measurements of RutpacPd are presented. The introduction of the tpac-ligand into the molecular framework offers a potential route to reduce the impact of water as compared to the well-studied class of RutpphzPd (with tpphz = tetrapyrido[3,2-a:2′,3′-c:3″,2″-h:2?,3?-j]phenazine) complexes. The distinct impact of water on the electron-transfer processes in tpphz-ligands stems from the possibility of water to form hydrogen bonds to the phenazine nitrogen atoms and will potentially reduced when replacing the phenazine by the acridine unit. The effect of this structural variation on the catalytic properties and the underlying ultrafast intramolecular charge transfer behavior will be discussed in detail.  相似文献   

3.
The reactions of the trimethylsiloxychlorosilanes (Me3SiO)RR′SiCl (1a-h: R′ = Ph, 1a: R = H, 1b: R = Me, 1c: R = Et, 1d: R = iPr, 1e: R = tBu, 1f: R = Ph, 1g: R = 2,4,6-Me3C6H2 (Mes), 1h: R = 2,4,6-(Me2CH)3C6H2 (Tip); 1i: R = R′ = Mes) with lithium metal in tetrahydrofuran (THF) at −78 °C and in a mixture of THF/diethyl ether/n-pentane in a volume ratio 4:1:1 at −110 °C lead to mixtures of numerous compounds. Dependent on the substituents silyllithium derivatives (Me3SiO)RR′SiLi (2b-i), Me3SiO(RR′Si)2Li (3a-g), Me3SiRR′SiLi (4a-h), (LiO)RR′SiLi (12e, 12g-i), trisiloxanes (Me3SiO)2SiRR′ (5a-i) and trimethylsiloxydisilanes (6f, 6h, 6i) are formed. All silyllithium compounds were trapped with Me3SiCl or HMe2SiCl resulting in the following products: (Me3SiO)RR′SiSiMe2R″ (6b-i: R″ = Me, 7c-i: R″ = H), Me3SiO(RR′Si)2SiMe2R″ (8a-g: R″ = Me, 9a-g: R″ = H), Me3SiRR′SiSiMe2R″ (10a-h: R″ = Me, 11a-h: R″ = H) and (HMe2SiO)RR′SiSiMe2H (13e, 13g-i). The stability of trimethylsiloxysilyllithiums 2 depends on the substituents and on the temperature. (Me3SiO)Mes2SiLi (2i) is the most stable compound due to the high steric shielding of the silicon centre. The trimethylsiloxysilyllithiums 2a-g undergo partially self-condensation to afford the corresponding trimethylsiloxydisilanyllithiums Me3SiO(RR′Si)2Li (3a-g). (Me3)Si-O bond cleavage was observed for 2e and 2g-i. The relatively stable trimethylsiloxysilyllithiums 2f, 2g and 2i react with n-butyllithium under nucleophilic butylation to give the n-butyl-substituted silyllithiums nBuRR′SiLi (15g, 15f, 15i), which were trapped with Me3SiCl. By reaction of 2g and 2i with 2,3-dimethylbuta-1,3-diene the corresponding 1,1-diarylsilacyclopentenes 17g and 17i are obtained.X-ray studies of 17g revealed a folded silacyclopentene ring with the silicon atom located 0.5 Å above the mean plane formed by the four carbon ring atoms.  相似文献   

4.
The chemistry of η3-allyl palladium complexes of the diphosphazane ligands, X2PN(Me)PX2 [X = OC6H5 (1) or OC6H3Me2-2,6 (2)] has been investigated.The reactions of the phenoxy derivative, (PhO)2PN(Me)P(OPh)2 with [Pd(η3-1,3-R′,R″-C3H3)(μ-Cl)]2 (R′ = R″ = H or Me; R′ = H, R″ = Me) give exclusively the palladium dimer, [Pd2{μ-(PhO)2PN(Me)P(OPh)2}2Cl2] (3); however, the analogous reaction with [Pd(η3-1,3-R′,R″-C3H3)(μ-Cl)]2 (R′ = R″ = Ph) gives the palladium dimer and the allyl palladium complex [Pd(η3-1,3-R′,R″-C3H3)(1)](PF6) (R′ = R″ = Ph) (4). On the other hand, the 2,6-dimethylphenoxy substituted derivative 2 reacts with (allyl) palladium chloro dimers to give stable allyl palladium complexes, [Pd(η3-1,3-R′,R″-C3H3)(2)](PF6) [R′ = R″ = H (5), Me (7) or Ph (8); R′ = H, R″ = Me (6)].Detailed NMR studies reveal that the complexes 6 and 7 exist as a mixture of isomers in solution; the relatively less favourable isomer, anti-[Pd(η3-1-Me-C3H4)(2)](PF6) (6b) and syn/anti-[Pd(η3-1,3-Me2-C3H3)(2)](PF6) (7b) are present to the extent of 25% and 40%, respectively. This result can be explained on the basis of the steric congestion around the donor phosphorus atoms in 2. The structures of four complexes (4, 5, 7a and 8) have been determined by X-ray crystallography; only one isomer is observed in the solid state in each case.  相似文献   

5.
A series of new oligofluorene-based push-pull type blue light-emitting functional materials, namely, 2-(9H-carbazole-9-yl)-7-(4-cyanophenyl)-9,9-dihexylfluorene (F1), 7-(9H-carbazol-9-yl)-7′-(4-cyanophenyl)-2,2′-bi(9,9-dihexylfluorene) (F2), 7-(9H-carbazole-9-yl)-7″-(4-cyanophenyl)-2,2′:7′,2″-ter(9,9-dihexylfluorene) (F3), and 7-(9H-carbazole-9-yl)-7″′-(4-cyanophenyl)-2,2′:7′,2″:7″,2″′-quarter(9,9-dihexylfluorene) (F4) were synthesized and characterized. Their onset decomposition temperatures for the thermal bond cleavage and the glass-transition temperatures were in general increased with increasing number of fluorene units. In dilute toluene solution, the oligofluorenes exhibited main absorption peaks in the range of 343-370 nm, photoluminescence maxima from 403 to 410 nm, and absolute quantum yields (ΦPLs) of higher than 87%. In contrast, the absorption spectra of these compounds in the thin films had no large differences from those in the solutions except for the slight peak red-shifts (2-8 nm). The main emission maxima of F1, F2, and F3 in the thin films were located at 418-420 nm, while the main emission of F4 was found to be shifted to 446 nm, followed by a shoulder peak at 421 nm. The ΦPLs of these thin films were estimated in the range of 59.2-68.7%. The existence of the electron-pull and -push end groups could effectively tune the energy levels of the oligofluorenes. By using the organic light emitting device (OLED) configuration of ITO/PEDOT:PSS/oligofluorenes/TPBi/LiF/Al by solution-process, F4 displayed the best performance: the lowest turn-on voltage (4.1 V) and highest maximum luminance (2180 cd/m2) with maximal current efficiency of 1.17 cd/A. When F4 was fabricated into the optimized device of ITO/MoO3/NPB/CBP:F4(1:4)/TPBi/LiF/Al by vapor deposition, highest brightness of 5135 cd/m2 and current efficiency of 1.76 cd/A were achieved with the Commission Internationale de l’Eclairage (CIE) coordinates of (0.16, 0.09).  相似文献   

6.
The precursor 1-(9-anthracenylmethyl)-3-alkylbenzimidazolium chlorides (1a, alkyl = C4H9, 1b, alkyl = C6H13) and their three new NHC silver(I) and mercury(II) complexes {[1-(9-anthracylmethyl)-3-alkylbimy]MCl}2 (2a, alkyl = C4H9, M = Ag; 2b, alkyl = C6H13, M = Ag; 3a, alkyl = C4H9, M = Hg; bimy = benzimidazol-2-ylidene) have been prepared and characterized. The crystal structures of 2a, 2b and 3a showed that 2-D supramolecular layers are formed by both benzimidazole ring head to tail π-π stacking interactions and anthracene ring face-to-face π-π stacking interactions.  相似文献   

7.
1,8-Naphthyridine (napy) and terpyridine-analogous (N,N,C) tridentate ligands coordinated ruthenium (II) complexes, [RuL(napy-κ2N,N′) (dmso)](PF6)2 (1: L=L1=N″-methyl-4′-methylthio-2,2′:6′,4″-terpyridinium, 2: L = L2 = N″-methyl-4′-methylthio-2,2′:6′,3″-terpyridinium) were prepared and their chemical and electrochemical properties were characterized. The structure of complex 1 was determined by X-ray crystallographic study, showing that it has a distorted octahedral coordination style. The cyclic voltammogram of 1 in DMF exhibited two reversible ligand-localized redox couples. On the other hand, the CV of 2 shows two irreversible cathodic peaks, due to the Ru-C bond of 2 containing the carbenic character. The IR spectra of 1 in CO2-saturated CH3CN showed the formation of Ru-(η1-CO2) and Ru-CO complexes under the controlled potential electrolysis of the solution at −1.44 V (vs. Fc/Fc+). The electrochemical reduction of CO2 catalyzed by 1 at −1.54 V (vs. Fc/Fc+) in DMF-0.1 M Me4NBF4 produced CO with a small amount of HCO2H.  相似文献   

8.
Two mixed metal organic-inorganic hybrid compounds, CuVO2(4,4′-bpy)(PO4), 1, and CuVO2(4,4′-bpy)(AsO4), 2, have been synthesized under hydrothermal conditions and structurally characterized by single-crystal X-ray diffraction. The two compounds are isostructural and crystallize in the monoclinic space group C2/c (No. 15) with a=21.941(2) Å, b=8.0915(7) Å, c=15.856(1) Å, β=110.424(2)°, Z=8, and R1=0.037 for 1, and a=21.923(2) Å, b=8.2447(9) Å, c=16.176(2) Å, β=110.967(2)°, Z=8, and R1=0.041 for 2. The structure consists of bimetallic oxide layers covalently linked through 4,4′-bpy pillars into a 3D framework. Each oxide layer is constructed from corner-sharing VO4 and PO4 tetrahedra and CuN2O3 square pyramids. On the basis of magnetic susceptibility study of 1, bond-valence calculation and the presence of dioxovanadium unit, the Cu atom is divalent and the V atom is pentavalent.  相似文献   

9.
2-Phenylaniline reacted with Pd(OAc)2 in toluene at room temperature for 24 h in a one-to-one molar ratio and with the system PdCl2, NaCl and NaOAc in a 1 (2-phenylaniline):1 (PdCl2):2 (NaCl):1 (NaOAc) molar ratio in methanol at room temperature for one week to give the dinuclear cyclopalladated compounds (μ-X)2[Pd{κ2-N2′,C1-2-(2′-NH2C6H4)C6H4}]2 [1a (X = OAc) and 1b (X = Cl)] in high yield. Moreover, the reaction between 2-phenylaniline and Pd(OAc)2 in one-to-one molar ratio in acid acetic at 60 °C for 4 h, followed by a metathesis reaction with LiBr, allowed isolation of the dinuclear cyclopalladated compound (μ-Br)2[Pd{κ2-N2′,C1-2-(2′-NH2C6H4)C6H4}]2 (1c) in moderate yield. A parallel treatment, but using monodeuterated acetic acid (DOAc) as solvent in the cyclopalladation reaction, allowed isolation of a mixture of compounds 1c, 1cd1 [Pd{κ2-N2′,C1-2-(2′-NH2C6H4)C6H4](μ-Br)2[Pd{κ2-N2′,C1-2-(2′-NH2C6H4)-3-d-C6H3] and 1cd2 (μ-Br)2[Pd{κ2-N2′,C1-2-(2′-NH2C6H4)-3-d-C6H3}]2 in moderate yield and with a deuterium content of ca. 60%. 1a and 1b reacted with pyridine and PPh3 affording the mononuclear cyclopalladated compounds [Pd{κ2-N2′,C1-2-(2′-NH2C6H4)C6H4}(X)(L)] [2a (X = OAc, L = py), 2b (X = Cl, L = py), 3a (X = OAc, L = PPh3) and 3b (X = Cl, L = PPh3)] in a yield from moderate to high. Furthermore, 1a reacted with Na(acac) · H2O to give the mononuclear cyclopalladated compound 4 [Pd{κ2-N2′,C1-2-(2′-NH2C6H4)C6H4}(acac)] in moderate yield. 1H NMR studies in CDCl3 solution of 2a, 2b, 3a, 3b and 4 showed that 2a and 3a presented an intramolecular hydrogen bond between the acetato ligand and the amino group, and were involved in a dynamic equilibrium with water present in the CDCl3 solvent; and that the enantiomeric molecules of 2b and 4 were in a fast exchange at room temperature, while they were in a slow exchange for 2a, 3a and 3b. The X-ray crystal structures of 3b and 4 were determined. 3b crystallized in the triclinic space group with a = 9.9170(10), b = 10.4750(10), c = 12.0890(10) Å, α = 98.610(10)°, β = 94.034(10)° and γ = 99.000(10)° and 4 in the monoclinic space group P21/a with a = 11.5900(10), b = 11.2730(10), c = 12.2150(10) Å, α = 90°, β = 107.6560(10)° and γ = 90°.  相似文献   

10.
Two polymorphs of an organic-inorganic hybrid compound, Fe(2,2′-bpy)(HPO4)(H2PO4) (1 and 2) (2,2′-bpy=2,2′-bipyridine), have been synthesized by hydrothermal methods and structurally characterized by single-crystal X-ray diffraction, thermogravimetric analysis, and magnetic susceptibility. Crystal data are as follows: Polymorph 1, monoclinic, space group P21/n (No. 14), a=10.904(2) Å, b=6.423(1) Å, c=19.314(3) Å, β=101.161(3)°, and Z=4; Polymorph 2, monoclinic, space group P21/c (No. 14), a=11.014(1) Å, b=15.872(2) Å, c=8.444(1) Å, β=109.085(3)°, and Z=4. Polymorph 1 adopts a chain structure in which each iron atom is coordinated by two nitrogen atoms from 2,2′-bpy ligand and four phosphate oxygen atoms. These infinite chains are extended into a 3-D supramolecular array via π-π stacking interactions of the lateral 2,2′-bpy ligands. The structure of polymorph 2 consists of the same building units, namely FeO4N2 octahedron, HPO4 and H2PO4 tetrahedra, and 2,2′-bpy ligand, which are linked through their vertices forming an undulated sheetlike structure with 4,12 network. Adjacent layers are extended into a 3-D array via π-π stacking interactions of the aromatic groups. Magnetic susceptibility measurement results confirm that the iron atoms in both compounds are present in the +3 oxidation state.  相似文献   

11.
Two novel light-emitting materials bis-[2′-2″-(9H-fluoren-2-yl)-vinyl-8-hydroxyquinoline] zinc(II) (3) and bis-[2′-4″-(4,5-diphenyl-1H-imidazol-2-yl)styryl-8-hydroxyquinoline] zinc(II) (4) containting 8-hydroxyquinoline and fluorene or imidazole moieties have been synthesized. The optical properties of these complexes were influenced by the styryl substituents, and exhibited orange-emission. They have higher fluorescence quantum yields than Alq3, and good stabilities with thermal decomposition temperatures 395 °C and 435 °C. The single-layer OLED fabricated by 3 emitted lemon-yellow, and exhibited good device performance with a maximum luminance of 489 cd m−2, and luminance efficiency of up to 0.41 cd A−1. The single-layer OLED fabricated by 4 emitted yellow-green, and exhibited good device performance with a maximum luminance of 323 cd m−2, and luminance efficiency of up to 0.54 cd A−1.  相似文献   

12.
The new selenite-chlorides with composition Sr3(SeO3)2Cl2 (I) and Sr2M(SeO3)2Cl2 (M=Co, Ni (II and III)) were obtained. They crystallize in monoclinic system I: space group C2/m, a=13.203(2) Å, b=5.5355(8) Å, c=6.6170(10) Å, β=95.89(1)°, Z=2; II Space group P21/n, a=5.3400(10) Å, b =6.4279(6) Å, c=12.322(1) Å, β=92.44(1)°, Z=2; III: space group P21/n, a=5.3254(11) Å, b=6.4363(13) Å, c=12.197(2), β=92.53(3)°, Z=2. All three compounds are constructed in the same manner. Sr polyhedra form infinite layers, which are interconnected into a 3D framework by means of Sr polyhedra in the case of I or Co and Ni polyhedra in the case of II and III. Se atoms are situated inside the channels of the 3D framework. The topological analysis of ELF for I confirmed that the lone electron pairs of SeO3 groups are located inside these channels.  相似文献   

13.
New μ-vinylalkylidene complexes cis-[Fe2{μ-η13-Cγ(R′)Cβ(R″)CαHN(Me)(R)}(μ-CO)(CO)(Cp)2] (R = Me, R′ = R″ = Me, 3a; R = Me, R′ = R″ = Et, 3b; R = Me, R′ = R″ = Ph, 3c; R = CH2Ph, R′ = R″ = Me, 3d; R = CH2Ph, R′ = R″ = COOMe, 3e; R = CH2 Ph, R′ = SiMe3, R″ = Me, 3f) have been obtained b yreacting the corresponding vinyliminium complexes [Fe2{μ-η13-Cγ(R′)Cβ(R″)CαN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (2a-f) with NaBH4. The formation of 3a-f occurs via selective hydride addition at the iminium carbon (Cα) of the precursors 2a-f. By contrast, the vinyliminium cis-[Fe2{μ-η13-Cγ (R′) = Cβ(R″)Cα = N(Me)(Xyl)}(μ-CO)(CO)(Cp)2][SO3CF3] (R′ = R″ = COOMe, 4a; R′ = R″ = Me, 4b; R′ = Prn, R″ = Me, 4c; Prn = CH2CH2CH3, Xyl = 2,6-Me2C6H3) undergo H addition at the adjacent Cβ, affording the bis-alkylidene complexes cis-[Fe2{μ-η12-C(R′)C(H)(R″)CN(Me)(Xyl)}(μ-CO)(CO)(Cp)2], (5a-c). The cis and trans isomers of [Fe2{μ-η13-Cγ(Et)Cβ(Et)CαN(Me)(Xyl)}(μ-CO)(CO)(Cp)2][SO3CF3] (4d) react differently with NaBH4: the former reacts at Cα yielding cis-[Fe2{μ-η13-Cγ(Et)Cβ(Et)CαHN(Me)(Xyl)}(μ-CO)(CO)(Cp)2], 6a, whereas the hydride attack occurs at Cβ of the latter, leading to the formation of the bis alkylidene trans-[Fe2{μ-η12-C(Et)C(H)(Et)CN(Me)(Xyl)}(μ-CO)(CO)(Cp)2] (5d). The structure of 5d has been determined by an X-ray diffraction study. Other μ-vinylalkylidene complexes cis-[Fe2{μ-η13-Cγ(R′)Cβ(R″)CαHN(Me)(Xyl)}(μ-CO)(CO)(Cp)2], (R′ = R″ = Ph, 6b; R′ = R″ = Me, 6c) have been prepared, and the structure of 6c has been determined by X-ray diffraction. Compound 6b results from treatment of cis-[Fe2{μ-η13-Cγ(Ph)Cβ(Ph)CαN(Me)(Xyl)}(μ-CO)(CO)(Cp)2][SO3CF3] (4e) with NaBH4, whereas 6c has been obtained by reacting 4b with LiHBEt3. Both cis-4d and trans-4d react with LiHBEt3 affording cis-6a.  相似文献   

14.
2′,3′,4′,5′,6′,7′-Hexahydrodispiro[cyclopropane-1,1′-anthracene-8′,1″-cyclopropane] (1) was prepared by double olefination (Wittig) and double methylenation (Furukawa) of 1,8-dioxo-1,2,3,4,5,6,7,8-octahydroanthracene (4) that was in turn prepared in two steps from 1,3-dibromobenzene. The X-ray structure of 1 shows that the C-9-H of its anthracene core is located 2.6 Å from the centroids of each of the flanking cyclopropane rings. The 1H NMR spectrum of 1 shows that the C-9-H resonance (δ 5.95) falls 0.84 ppm upfield from the C-10-H resonance (δ 6.79).  相似文献   

15.
Four new mixed ligand nickel(II) complexes viz., [Ni(tren)(phen)](ClO4)2 (1), [Ni(tren)(bipy)](ClO4)2 (2), [Ni(SAA)(PMDT)] · 2H2O (3) and [Ni(SAA)(TPTZ)] (4) (tren = tris(2-aminoethylamine), phen = 1,10-phenanthroline, bipy = 2,2′-bipyridine, SAA = salicylidene anthranilic acid, PMDT = N,N,N′,N″,N″-pentamethyldiethylenetriamine, TPTZ = 2,4,6-tri(2-pyridyl)-1,3,5-triazine) have been synthesized and characterized by means of elemental analysis, spectroscopic, magnetic susceptibility and cyclic voltammetric measurements. Single crystal X-ray analysis of [Ni(tren)(phen)](ClO4)2 (1) and [Ni(SAA)(PMDT)] · 2H2O (3) has revealed the presence of a distorted octahedral geometry. Superoxide dismutase activity of these complexes has also been measured.  相似文献   

16.
We describe reactions of [99mTc(H2O)3(CO)3)]+ (1) with Diels-Alder products of cyclopentadiene such as “Thiele’s acid” (HCp-COOH)2 (2) and derivatives thereof in which the corresponding [(Cp-COOH)99mTc(CO)3)] (3) complex did form in water. We propose a metal mediated Diels-Alder reaction mechanism. To show that this reaction was not limited to carboxylate groups, we synthesized conjugates of 2 (HCp-CONHR)2 (4a-c) (4a, R = benzyl amine; 4b, R = Nα-Boc-l-2,3-diaminopropionic acid and 4c, R = glycine). The corresponding 99mTc complexes [(4a)99mTc(CO)3)] 6a, [(4b)99mTc(CO)3)] 6b and [(4c)99mTc(CO)3)] 6c have been prepared along the same route as for Thiele’s acid in aqueous media demonstrating the general applicability of this synthetic strategy. The authenticity of the 99mTc complexes on the no carrier added level have been confirmed by chromatographic comparison with the structurally characterized manganese or rhenium complexes.Studies of the reaction of 1 with Thiele’s acid bound to a solid phase resin demonstrated the formation of [(Cp-COOH)99mTc(CO)3)] 3 in a heterogeneous reaction. This is the first evidence for the formation of no carrier added 99mTc radiopharmaceuticals containing cyclopentadienyl ligands via solid phase syntheses. Macroscopically, the manganese analogue 5a and the rhenium complexes 5b-c have been prepared and characterized by IR, NMR, ESI-MS and X-ray crystallography for 5a (monoclinic, P21/c, a = 9.8696(2) Å, b = 25.8533(4) Å, c = 11.8414(2) Å, β = 98.7322(17)°) in order to unambiguously assign the authenticity of the corresponding 99mTc complexes.  相似文献   

17.
The high-yield syntheses of trifluoroacetonitrile (1a), pentafluoropropionitrile (1b) and heptafluorobutyronitrile (1c) under mild reaction conditions using readily available starting materials (trifluoroacetamide, pentafluoropropionamide, heptafluorobutanamide) are described. Furthermore, the reactions of the perfluoroalkyl nitriles with sodium azide in acetonitrile forming sodium 5-trifluoromethyltetrazolate (2a), sodium 5-pentafluoroethyltetrazolate (2b) and sodium 5-heptafluoropropyltetrazolate (2c) were undertaken. The 5-perfluoroalkyltetrazolate salts were characterized using vibrational (Raman and infrared) and multinuclear (13C, 14/15N, 19F) NMR spectroscopy, differential scanning calorimetry, mass spectrometry and elemental analysis. Additionally, the single crystal X-ray structure of the monohydrate of 2a was determined. Crystal data: 2a·H2O: monoclinic, C2/m, a = 18.8588(6) Å, b = 7.1857(2) Å, c = 9.3731(3) Å, β = 102.938(3)°, V = 1237.94(7) Å3, Z = 8, Dcalc = 1.911 g cm−3.  相似文献   

18.
Hydrothermal treatment of zinc chloride, 1,3,5-benzenetricarboxylic acid (H3BTC), and 4,4′-dipyridylamine (dpa) afforded two different complexes depending on reaction conditions, which were characterized by single-crystal X-ray diffraction, infrared spectroscopy, and elemental analysis. Under acidic conditions, a discrete neutral molecular species with formulation [Zn(HBTC)2(Hdpa)2] (1) was isolated, which aggregates into two-dimensional hydrogen-bonded layers. Under more basic conditions, the two-dimensional layered coordination polymer [Zn(BTC)(Hdpa)] (2) is obtained, which manifests covalent linkage of [Zn(BTC)(Hdpa)] serpentine chain motifs into 3-connected undulating 4.82 topology 2-D layers. Both 1 and 2 possess tetrahedral coordination at Zn. Use of cadmium nitrate in the synthesis resulted in [Cd(BTC)(H2O)(Hdpa)] (3), which displays a similar layer topology as 2 but with significant adjustments imparted by octahedral coordination at Cd. In all cases, supramolecular hydrogen bonding promoted by Hdpa ligands provide an important assistive structure-directing role. All materials display blue luminescence upon excitation with ultraviolet light, ascribed to intraligand transitions. Crystallographic data: 1: monoclinic, C2/c, a=25.389(6) Å, b=9.811(2) Å, c=17.309(4) Å, and β=128.957(3)°, 2: monoclinic, P21/c, a=13.212(17)c, b=17.15(2) Å, c=7.506(10) Å, and β=93.71(2)°, and 3: monoclinic, C2/c, a=14.241(6) Å, b=15.218(6) Å, c=17.976(7) Å, and β=109.330(6)°.  相似文献   

19.
A series of triorganotin (IV) complexes with 2,3,4,5-tetrafluorobenzoic acid and mixed-ligands of the types: R3Sn(O2CC6HF4)m · L (m = 1, L = 0, R = Ph 1; m = 1, L = Ph3PO, R = Ph 4, Me 5), [R3Sn(O2CC6HF4)]m · L (m = 2, L = 4,4′-bipy, R = Ph 2, Me 3; m = n, L = 0, R = Me 6), and [R3Sn(O2CC6HF4) · (H2O)]m · L · C2H5OH (m = 2, L = Phen, R = Ph 7, Me 8), (4,4′-bipy = 4,4′-bipyridyl; Phen = 1,10-phenanthroline), have been synthesized by the reaction of triorganotin chloride and 2,3,4,5-tetrafluorobenzoic acid in the presence of mixed-ligands: 4,4′-bipy, triphenylphosphine oxide, or phen. All complexes were characterized by elemental analysis, IR, 1H, 13C, 119Sn NMR spectroscopy analysis. Except for 5 and 8, all the complexes were also characterized by X-ray crystallography.  相似文献   

20.
Two uranyl tellurates, AgUO2(HTeO5) (1) and Pb2UO2(TeO6) (2), were synthesized under hydrothermal conditions and were structurally, chemically, and spectroscopically characterized. 1 crystallizes in space group Pbca, a=7.085(2) Å, b=11.986(3) Å, c=13.913(4) Å, V=1181.5(5) Å3, Z=8; 2 is in P2(1)/c, a=5.742(1) Å, b=7.789(2) Å, c=7.928(2) Å, V=90.703(2) Å3, and Z=2. These are the first structures reported for uranyl compounds containing tellurate. The U6+ cations are present as (UO2)2+ uranyl ions that are coordinated by O atoms to give pentagonal and square bipyramids in compounds 1 and 2, respectively. The structural unit in 1 is a sheet consisting of chains of edge-sharing uranyl pentagonal bipyramids that are one bipyramid wide, linked through the dimers of TeO6 octahedra. In 2, uranyl square bipyramids share each of their equatorial vertices with different TeO6 octahedra, giving a sheet with the autunite-type topology. Sheets in 1 and 2 are connected through the low-valence cations that are located in the interlayer region. The structures of 1 and 2 are compared to those of uranyl compounds containing octahedrally coordinated cations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号