首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eight diorganotin(IV)-oxo-carboxylates {[R2Sn(O(O)CR′)]2O}2?·?Y (R′?=?C4H3N2Y?= H2OR?=?nBu 1, Y?=?0 R?=?Me 2, Y?=?0 R?=?C6H5 3, Y?=?0 R?=?C6H5CH2 4; R′?=?CH2SC4H3N2-2,6Y?=?0 R?=?nBu 5, Y?=?CH2Cl2R?=?Me 6, Y?=?0 R?=?C6H5 7, Y?=?0 R?= C6H5CH2 8) have been prepared in 1?:?1 molar ratios by reactions of diorganotin(IV) oxide with 2-pyrazinecarboxylic acid or (2-pyrimidylthio)acetic acid, respectively. All the complexes are characterized by elemental analysis, IR, 1H NMR and 13C NMR spectra. Except for 2, 4 and 7, the complexes are also characterized by X-ray crystallography diffraction analyses, which reveal that the complexes adopt the familiar dicarboxylato tetraorganodistannoxane structural mode. Among them, the evident difference is that weak intramolecular interactions between Sn and N atoms are recognized in complexes 1 and 3. However, for complex 5 two different coordination modes are found in the same lattice.  相似文献   

2.
A series of diorganotin(IV) and triorganotin(IV) compounds of the type [R2Sn(pca)2ClSnR3]2 (RPhCH21, 2-ClC6H4CH22, 2-FC6H4CH23, 4-FC6H4CH24, 4-CNC6H4CH25, 4-ClC6H4CH26, 2,4-Cl2C6H3CH27; Hpca2-methylpyrazine-5-acid), [(nBu)3Sn(pca)]8, [(CH3)2Cl2Sn(pca)Sn(CH3)2(pca)]9, {[(nBu)2Sn(pca)]2O}210 and {[Ph2Sn(pca)]3O2[Ph2Sn(OCH3)]} 11 have been obtained by reactions of 2-methylpyrazine-5-acid with triorganotin(IV) chloride, diorganotin(IV) dichloride, and diorganotin(IV) oxide. All compounds were characterized by elemental, IR, and NMR spectra analyses. The crystal structure of compounds 1, 8-11 were determined by X-ray single crystal diffraction, which revealed that compound 1 was tetranuclear macrocyclic structures with seven-coordinate and five-coordinate tin atoms, compounds 8 and 9 were polymeric chain structures with five-coordinate and seven-coordinate tin atoms, compounds 10 and 11 were monomeric structures with six-coordinate and five-coordinate tin atoms.  相似文献   

3.
Four new complexes have been synthesized based on the 2,4,5-trifluoro-3-methoxybenzoic acid and 4,4′-bipy of the type [R3Sn(OOCC6HF3OCH3)]2·(4,4′-bpy). All complexes were characterized by elemental, IR, 1H, 13C and 119Sn NMR spectra analyses. Complexes 1 and 4 were also characterized by X-ray crystallography. Crystal structures of 1 and 4 show that the coordination number of tin atom is five and the 2D network is connected by intermolecular C–H···O interactions.  相似文献   

4.
Six new organotin carboxylates based on 1,3-benzenedicarboxylic acid and 1,4-benzenedicarboxylic acid derivatives, namely (Ph3Sn)2(2,5-L1)(C2H5OH)2 (1) (2,5-H2L1 = 2,5-dibenzoylterephthalic acid), (Ph3Sn)2(2,5-L2)(C2H5OH)2 (2) (2,5-H2L2 = 2,5-bis(4-methylbenzoyl)terephthalic acid), (Ph3Sn)2(2,5-L3)(C2H5OH)2 (3) (2,5-H2L3 = 2,5-bis(4-ethylbenzoyl)terephthalic acid), [(n-Bu2Sn)4(4,6-L1)O2(OH)(OC2H5)]2·2(C2H5OH) (4) (4,6- H2L1 = 4,6-dibenzoylisophthalic acid), [(n-Bu2Sn)4(4,6-L1)O2(OH)(OC4H9)]2·2(C4H9OH) (5) and [(n-Bu2Sn)4(4,6-L2)O2(OH)(OC2H5)]2·2(C2H5OH) (6) (4,6-H2L2 = 4,6-bis(4-methylbenzoyl)isophthalic acid), have been synthesized. All the organotin carboxylates have been characterized by elemental analysis, IR, 1H and 13C NMR spectroscopy and X-ray crystallography diffraction analyses. The structural analysis reveals that complexes 1-3 show similar structures, containing binuclear triorganotin skeletons. The significant intermolecular O-H?O hydrogen bonds linked the complexes 1-3 to form a novel 2D network polymer with 38-member macrocycles. In complexes 4-6, two Sn4O4 ladders are connected by two 1,3-benzenedicarboxylic acid derivatives to yield ladder-like octanuclear architectures and form macrocycle with 24 atoms. In addition, the antitumor activities of complexes 1-6 have been studied.  相似文献   

5.
A series of organotin (IV) complexes with 6-amino-1,3,5-triazine-2,4-dithiol of the type [(RnSnCl4−n)2 (C3H2N4S2)] (n = 3: R = Me 1, n-Bu 2, PhCH23, Ph 4; n = 2: R = Me 5, n-Bu 6, PhCH27, Ph 8) have been synthesized. All the complexes 1-8 have been characterized by elemental analysis, IR, 1H and 13C NMR spectra. Among them complexes 1, 4, 5 and 8 have also been characterized by X-ray crystallography diffraction analyses, which revealed that the tin atoms of complexes 1, 4, 5 and 8 are all five-coordinated with distorted trigonal bipyramid geometries.  相似文献   

6.
Four organotin(IV) compounds, [Bu6Sn6O6(L1)6] (1), [Bu6Sn6O6(L2)4(L3)2] (2), [Bu8Sn4O2(L2)4] (3) and [Ph3Sn(L2)] (4), were obtained by reactions of BuSnOH, Bu2SnO and Ph3SnOH with 4-((6-chloropyridin-3-yl)methylamino)benzonic acid (HL1), 4-((pyridin-2-yl)methylamino)benzonic acid (HL2) and p-aminobenzoic acid (HL3). 1 is a hexameric cluster, existing in a drum-like structure with prismatic Sn6O6 core. Compound 2 is a mixed drum, containing two kinds of carboxylic acid anions. Compound 3 possesses a Sn4O4 ladder structure. In 2 and 3, two-dimensional supramolecular structures are formed by the intermolecular hydrogen-bonding interactions. Compound 4 is a monomer with a dimer formed through π–π stacking between adjacent L2 anions. Compounds 14 were characterized by elemental analyses and IR spectra.  相似文献   

7.
Five new organotin(IV) complexes, [(R3Sn)(O2C15H13)] n (R?=?Me: 1; nBu: 2), [RSn(O)(O2C15H13)]6 (R?=?Ph: 3), [(R2Sn)2(O2C15H13)2(μ 3-O)]2 (R?=?Me: 4), and [(R2Sn)(O2C15H13)2] (R?=?nBu: 5), have been prepared by the reaction of 2,3-diphenylpropionic acid and the corresponding organotin chloride with sodium ethoxide in methanol. All the complexes were characterized by elemental analysis, FT-IR, NMR (1H, 13C, 119Sn) spectroscopy, TGA, and X-ray crystallography. The structural analyses reveal that 1 and 2 are 1-D infinite polymeric chains with Sn in syn–anti conformation. Complex 3 has a drum structure with six Sn centers. Complex 4 has a supramolecular chain-like ladder through weak intermolecular Sn?···?O interactions. Complex 5 is a monomer, connected into a 1-D polymer through intermolecular C–H?···?O interactions. Complexes 1 and 5 crystallize in the orthorhombic space groups P212121 and P21212, which are chiral space groups.  相似文献   

8.
Introduction Metal thiolato complexes have been extensively investigated because of their ability to adopt various nuclearities and their relevance in biological science, since they form the inorganic part of the biologically active centers of some metalloproteins and enzymes.1-3 Recently, attention has been paid to the coordination chemistry of heterocyclic thiol/thione donors, which can give potential access to new compounds with unusual structures and reactivities,4 such as 2-mercaptobenzo-…  相似文献   

9.
The triorganotin(IV) derivatives of 2-mercapto-4-quinazolinone (HSqualone) of the type, R3SnL (R = Ph 1, CH32, PhCH23, p-F-PhCH24, o-F-PhCH25, n-Bu 6), were obtained by the reaction of the R3SnCl and HSqualone with 1:1 molar ratio in benzene. All complexes 1-6 were characterized by elemental analyses, IR, 1H and 13C NMR spectroscopy and the crystal structures of complexes 1-3 were also confirmed by X-ray crystallography. The structure analyses reveal that the tin atoms of complexes 1-3 are all distorted tetrahedral geometries. Furthermore, the dimeric structures in complexes 1-3 have also been found linked by intermolecular O-H?N or N-H?O hydrogen bonding interaction. Interestingly, the dimers of complexes 2 and 3 are further linked into one-dimensional chain through intermolecular C-H?S and C-H?O weak hydrogen bonding interactions, respectively.  相似文献   

10.
Reaction of 2-hydroxy-1-naphthaldehydebenzoylhydrazone(napbhH2) with manganese(II) acetate tetrahydrate and manganese(III) acetate dihydrate in methanol followed by addition of methanolic KOH in molar ratio (2 : 1 : 10) results in [Mn(IV)(napbh)2] and [Mn(III)(napbh)(OH)(H2O)], respectively. Activated ruthenium(III) chloride reacts with napbhH2 in methanolic medium yielding [Ru(III)(napbhH)Cl(H2O)]Cl. Replacement of aquo ligand by heterocyclic nitrogen donor in this complex has been observed when the reaction is carried out in presence of pyridine(py), 3-picoline(3-pic) or 4-picoline(4-pic). The molar conductance values in DMF (N,N-dimethyl formamide) of these complexes suggest non-electrolytic and 1 : 1 electrolytic nature for manganese and ruthenium complexes, respectively. Magnetic moment values of manganese complexes suggest Mn(III) and Mn(IV), however, ruthenium complexes are paramagnetic with one unpaired electron suggesting Ru(III). Electronic spectral studies suggest six coordinate metal ions in these complexes. IR spectra reveal that napbhH2 coordinates in enol-form and keto-form to manganese and ruthenium metal ions in its complexes, respectively. ESR studies of the complexes are also reported.  相似文献   

11.
Three novel phosphoramidate ligands with formula , R = Nicotinamide(nia), R′ = NHC(CH3)3(L1), NH(C6H11) (L2); R = isonicotinamide(iso), NH(C6H11) (L3) and their new organotin(IV) complexes with formula SnCl2(CH3)2(X)2, X = L1 (C1), L2 (C2), L3 (C3) plus SnCl2(CH3)2(L4)2(C4), L4 = isoP(O)[NHC(CH3)3]2, were synthesized and characterized by 1H, 13C, 31P,119Sn NMR, IR, UV-Vis spectroscopy and elemental analysis. Two novel complexes of nia and iso with formula SnCl2(CH3)2(X)2, X = nia (C5), iso (C6) were also prepared and all the complexes were spectroscopically studied in comparison to their related ligands and to each other. The crystal structure of complexes C1, C3, C4, and C5 were determined by X-ray crystallography. -Sn-Cl···H-N- major hydrogen bonds beside other electrostatic interactions produced a three dimensional polymeric cluster in the crystalline lattice of C1, C3, C5 and a two dimensional polymeric chain in C4. Results showed that coordination of the phosphoramidate ligand (L4) to Sn in C4 has been occurred from the nitrogen site of the pyridine ring similar to C5,C6 in which there is no PO donor site; however, in C1 and C3 the active donor site of corresponding ligands is PO. It seems that in these complexes there is a competition between PO and Npyridine donor sites and the influential factor which determines the winner site is the type of substituents on phosphorus atom.  相似文献   

12.
Alkyl derivatives of indole 3-acetic acid (IAA) have been prepared and are suitable for investigating steric substituent effects on hormonal activity without major interference from electronic effects. Triorganotin(IV) derivatives of indole 3-acetic acid and N-methylindole 3-acetic acid have been reported to act as insecticidal, fungicidal and bactericidal agents. Me3SnIAA is more active as a biocide than Cy3SnIAA. The activity of these two compounds may be due to the fact that four-coordinated tin monomers or five-coordinated tin polymers are often more active than chelated five-coordinated tin species because these readily undergo hydrolysis to give R3Sn(H2O+)2 species. The ligand affects the rate of formation of the ligand-free active organotin entity. Biocidal activity is expected from diorganotin(IV) pentacoordinated complexes of indole 3-acetic acid in the present case due to (i) the activity of pentacoordinated organotin species, (ii) the presence of an—NH moiety in the complexes, which is an active site for binding. The NH moiety may be deprotonated and nitrogen may coordinate with metal ions present in the physiological systems and thus destroy the activity of enzymes.  相似文献   

13.
New organotin(IV) carboxylates, [n-Bu2SnL2] (1), [Et2SnL2] (2), [Me2SnL2] (3), [n-Oct2SnL2] (4), [n-Bu3SnL] n (5), [Me3SnL] n (6), and [Ph3SnL] n (7), where L?=?3-(4-bromophenyl)-2-ethylacrylate, were synthesized and characterized by elemental analysis, FT-IR, and multinuclear NMR (1H, 13C, and 119Sn). Spectroscopic studies confirm coordination of L to the organotin moiety via COO group. Single-crystal X-ray analysis reveals bridging mode of coordination in 6. Packing diagram established a supramolecular cage-like structure for 6 due to Sn–O interactions (3.287?Å). Subsequent antimicrobial activities proved them to be active biologically.  相似文献   

14.
Four new diorganotin(IV) complexes, R2SnL (L?=?La: R?=?Me 1, Ph 2; L?=?Lb: R?=?Me 3, and Ph 4), have been synthesized by reaction of hydrazone ONO donors, 5-bromo-2-hydroxybenzaldehyde furan-2-carbohydrazone (H2La) and 2-hydroxynaphthaldehyde furan-2-carbohydrazone (H2Lb) with diorganotin(IV) dichloride in the presence of a base. The compounds have been investigated by elemental analysis and IR, 1H NMR, and 119Sn NMR spectroscopies. Spectroscopic studies show that the hydrazone is a tridentate dianionic ligand, coordinating via the imine nitrogen and phenolic and enolic oxygens. The structures of H2Lb and 3 have also been confirmed by X-ray crystallography. The results show that the structure of 3 is a distorted square pyramid with imine nitrogen in apical position. The in vitro antibacterial activities of ligands and complexes have been evaluated against gram-positive (Bacillus cereus and Staphylococcus aureus) and gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria. H2La and H2Lb show no activity but the diphenyltin(IV) complexes exhibit good activities towards two bacterial strains in comparison with standard bacterial drugs.  相似文献   

15.
Four organotin(IV) complexes of dihydrobis(2-mercaptothiazolinyl)borate were synthesized and characterized by elemental analysis and spectroscopic techniques (IR, 1H-NMR, 13C-NMR, 11B-NMR, and 119Sn-NMR). All the compounds were screened against bacterial, fungal, and cyanobacterial strains. Among the complexes, triorganotin(IV) complexes show better inhibition growth as compared to diorganotin(IV) complexes.  相似文献   

16.
Six diorganotin esters of Schiff-base ligands formulated as [R2SnLY]2, where L1 is C6H5CON2C(CH3)CO2 with Y?=?CH3CH2OH, R?=?mClC6H4CH2 (1), oFC6H4CH2 (2), pFC6H4CH2 (3) and L2 is 2-HOC6H4CON2C(CH3)CO2 with Y?=?CH3OH, R?=?oFC6H4CH2 (4), pFC6H4CH2 (5), mClC6H4CH2 (6) have been prepared and characterized by elemental analysis, IR, 1H and 119Sn NMR spectra. The crystal structures of complexes 1 and 4 have been determined by X-ray single crystal diffraction. The structure analyses reveal that the Sn atom in both 1 and 4 is seven-coordinate in distorted pentagonal bipyramid geometries with a planar SnO4N unit and two apical aryl carbon atoms, thus forming a dimeric molecule, which sits on a crystallographic center of symmetry. Intramolecular or intradimeric hydrogen bonds contribute to the stability and compactness of the crystal structures.  相似文献   

17.
A series of organotin(IV) complexes, [Bu2Sn(C6H5O2S)2] (1), [Bu3Sn(C6H5O2S)] (2), [Oct2Sn(C6H5O2S)2] (3) of 2-thiopheneacetic acid (HL) have been prepared and characterized through FT-IR and NMR spectroscopy. The crystal structure of 2 has been confirmed by X-ray single crystal analysis, in which tin adopts a trigonal bipyramidal geometry. The synthesized complexes have been screened for antibacterial, DNA protection, and enzyme inhibition activities against acetylcholinesterase as well as butylcholenesterase.  相似文献   

18.
Reactions of Co(II) and Ni(II) salts with the monosodium salt of 3-hydroxy-4-nitrobenzoic acid (3) in aqueous solution resulted in isomorphous covalent complexes 3C and 3D, of centrosymmetric geometries. In similar conditions, 2-hydroxy-4-methoxybenzoic acid (5) led to the covalent Zn(II) complex 5A, exhibiting a marked dissymmetric geometry. The present crystallographic data with structural data for a series of closely related metal complexes previously reported allow a tentative rationalization of the solid-state architecture of such complexes. The dissymmetry in 5A was interpreted on the basis of a mixed (monodentate and bidentate) metal-ligation mode and a pyramidal coordination at the metal.  相似文献   

19.
研究了以2-甲基吡啶为原料,以重铬酸钾为氧化剂,利用化学氧化法合成2-吡啶甲酸的反应条件.考察了反应温度、反应物2-甲基吡啶的浓度和与重铬酸钾的浓度比例、硫酸浓度和反应时间对产率、转化率及选择性的影响,其产物用红外、元素分析和熔点分析表征.实验表明,最佳反应条件:反应温度105℃,2-甲基吡啶摩尔浓度为0.075mol/L,重铬酸钾与2-甲基吡啶浓度比为2∶1,硫酸浓度为9 mol/L,反应时间为2 h,其转化率可达97.6%,2-吡啶甲酸的色谱产率可达87.7%,选择性为89.8%.  相似文献   

20.
A series of organotin(IV) complexes with O,O-diethyl phosphoric acid (L1H) and O,O-diisopropyl phosphoric acid (L2H) of the types: [R3Sn · L]n (L = L1, R = Ph 1, R = PhCH22, R = Me 3, R = Bu 4; L = L2, R = Ph 9, R = PhCH210, R = Me 11, R = Bu 12), [R2Cl Sn · L]n (L = L1, R = Me 5, R = Ph 6, R = PhCH27, R = Bu 8; L = L2, R = Me 13, R = Ph 14, R = PhCH215, R = Bu 16), have been synthesized. All complexes were characterized by elemental analysis, TGA, IR and NMR (1H, 13C, 31P and 119Sn) spectroscopy analysis. Among them, complexes 1, 2, 3, 5, 8, 9 and 11 have been characterized by X-ray crystallography diffraction analysis. In the crystalline state, the complexes adopt infinite 1D infinite chain structures which are generated by the bidentate bridging phosphonate ligands and the five-coordinated tin centers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号