首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New 1,1-alkoxy, aryl substituted palladium η3-allyls [Pd(μ-Br){η3-C(C6F5)(OMe)CHR1CHR2}]2 can be synthesized from [W(CO)5{C(OMe)CHR1CHR2}] and a palladium perfluoroaryl complex. The allyls are formed by transmetalation of the carbene fragment followed by migratory insertion of C6F5 to the putative and highly reactive Pd carbene complex. This reaction pathway predominates in all cases, but insertion of the double bond of the tungsten alkoxyvinylcarbenes into the Pd-C6F5 bond leads to secondary products, namely C6F5(OMe)CCR1CH(C6F5)R2.  相似文献   

2.
The reaction of β-diketiminate substituted germanium(II) and tin(II) fluorides (LGeF (1) and LSnF (2)) (L = CH{(CMe)2(2,6-iPr2C6H3N)2}) with diiron nonacarbonyl, Fe2(CO)9 at room temperature, leads to the iron carbonyl complexes of germanium(II) LGeFFe(CO)4 (3) and tin(II) LSnFFe(CO)4 (4), respectively. Compounds 3 and 4 were characterized by elemental analysis, NMR spectroscopy, and mass spectrometry. Furthermore, both complexes (3 and 4) were investigated by X-ray structural analysis which shows that both compounds are monomeric in the solid state containing terminal fluorine atoms.  相似文献   

3.
Thermal treatment of the substituted tetramethylcyclopentadienes [C5Me4HR] [R?=?n-propyl (1), i-propyl (2), cyclopentyl (3), cyclohexyl (4), and 4-NMe2Ph (5)] with Fe(CO)5 gave five new substituted tetramethylcyclopentadienyl dinuclear iron carbonyl complexes, [η5-C5Me4CH2CH2CH3]2Fe2(CO)4 (6), [η5-C5Me4CH(CH3)2]2Fe2(CO)4 (7), [η5-C5Me4CH(CH2)4]2Fe2(CO)4 (8), [η5-C5Me4CH(CH2)5]2Fe2(CO)4 (9), and [(η5-C5Me4)(4-NMe2Ph)]2Fe2(CO)4 (10). The new complexes were characterized by elemental analysis, IR, and 1H NMR spectra. The molecular structures of 6, 8, 9, and 10 were determined by X-ray single crystal diffraction.  相似文献   

4.
Reactions of (μ-edt)Fe2(CO)6 (edt = SCH2CH2S) (1) with the monophosphine ligands Ph2PCH2Ph, Ph2PC6H11, Ph2PCH2CH2CH3, or P(2-C4H3O)3 in the presence of Me3NO?2H2O afforded (μ-edt)Fe2(CO)5L [L = Ph2PCH2Ph, 2; Ph2PC6H11, 3; Ph2PCH2CH2CH3, 4; P(2-C4H3O)3, 5] in 70–88% yields. Complexes 25 were characterized by spectroscopy and single crystal X-ray diffraction analysis. The phosphorus of 25 is in an apical position of the distorted octahedral geometry of iron.  相似文献   

5.
The reactions of [Fe3(CO)12] or [Ru3(CO)12] with RNC (R=Ph, C6H4OMe-p or CH2SO2C6H4Me-p) have been investigated using electrospray mass spectrometry. Species arising from substitution of up to six ligands were detected for [Fe3(CO)12], but the higher-substituted compounds were too unstable to be isolated. The crystal structure of [Fe3(CO)10(CNPh)2] was determined at 150 and 298 K to show that both isonitrile ligands were trans to each other on the same Fe atom. For [Ru3(CO)12] substitution of up to three COs was found, together with the formation of higher-nuclearity clusters. [Ru4(CO)11(CNPh)3] was structurally characterised and has a spiked-triangular Ru4 core with two of the CNPh ligands coordinated in an unusual μ32 mode.  相似文献   

6.
Abstract

Treatment of the starting complex [Fe2(CO)6{μ-SCH2CH(CH2OH)S}] (1) with 2-(diphenylphosphino)benzoic acid in the presence of N,N’-dicyclohexylcarbodiimide and 4-dimethylaminopyridine gave the corresponding ester derivative [Fe2(CO)6{μ-SCH2CH(CH2O2CC6H4PPh2-2)S}] (2) in 92% yield. Further treatment of complex 2 with one equivalent of Me3NO · 2?H2O as the decarbonylating agent yielded diphenylphosphino-substituted complex [Fe2(CO)5{μ-SCH2CH(CH2O2CC6H4PPh2-2)S}] (3) in 79% yield. Both complexes were characterized by elemental analysis, spectroscopy, as well as by X-ray crystallography. Additionally, the electrochemical properties of these complexes were studied by cyclic voltammetry.  相似文献   

7.
Direct template macrocyclization of the three dimethylglyoxime molecules on the iron(II) ion and the capping of nonmacrocyclic K3CoDm3 tris-dimethylglyoximate with triethylantimony(V) derivatives led to the formation of triethylantimony-capped iron(II) and cobalt(III) clathrochelates. The complexes obtained have been characterized using elemental analysis, MALDI-TOF mass, IR, UV–Vis, 57Fe Mössbauer and 1H and 13C NMR spectroscopies, and X-ray crystallography. The influence of the nature of an encapsulated metal ion, the capping groups and the chelate fragments on a clathrochelate framework geometry is discussed. The cyclic voltammograms show oxidation and reduction waves assignable to Fe2+/3+ and Co2+/3+ couples of the encapsulated metal ion.  相似文献   

8.
A variety of methods have been used in the synthesis of amino-substituted (η6-arene)(η5-cyclopentadienyl) iron(II) complexes. Conventional thermal ligand exchange of 2-fluoroaniline with ferrocene in the presence of Devarda’s alloy gave an Ullmann coupling product, 2,2′ diaminobiphenyl complex, whereas omitting metal powder gave the 2-fluorobenzene complex. Double SNAr substitution of the 1,2-dichlorobenzene complex by dimethylamine is reported. Microwave-assisted SNAr reactions have led to the development of a one-pot synthesis of N-arylaminoacids. Acetylation of amino-complexes is described and the product anilide complexes used in SNAr displacements to form aminoanilide analogues. Hexamethyldisilazane was found to be an efficient aminating agent in the presence of alcohols or phenols in DMSO, leading to the synthesis of the (η6-1,2-diaminobenzene)(η5-Cp) iron(II) complex, the first (ArFeCp)+ species reported containing two primary amino groups.  相似文献   

9.
The reactions of dimeric complex [Rh(CO)2Cl]2 with hemilabile ether‐phosphine ligands Ph2P(CH2) nOR [n = 1, R = CH3 (a); n = 2, R = C2H5 (b)] yield cis‐[Rh(CO)2Cl(P ~ O)] (1) [P ~ O = η 1‐(P) coordinated]. Halide abstraction reactions of 1 with AgClO4 produce cis‐[Rh(CO)2(P ∩ O)]ClO4 (2) [P ∩ O = η 2‐(P,O)chelated]. Oxidative addition reactions of 1 with CH3I and I2 give rhodium(III) complexes [Rh(CO)(COCH3)ClI(P ∩ O)] (3) and [Rh(CO)ClI2(P ∩ O)] (4) respectively. The complexes have been characterized by elemental analyses, IR, 1H, 13C and 31P NMR spectroscopy. The catalytic activity of 1 for carbonylation of methanol is higher than that of the well‐known [Rh(CO)2I2]? species. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
We reported the synthesis of tris(pyridyl)phosphine selenide (TppSe) and tris(4-methylpyridin-2-yl)phosphine selenide (MeTppSe), which were prepared by a simple and straightforward one-pot method with red phosphorus in a KOH/DMSO suspension, and treatment of resulted phosphines with selenium in hot toluene. These compounds were characterized by mass spectroscopy, 1H, 13C and 31P NMR spectroscopies and the structure of MeTppSe was characterised by a single-crystal X-ray diffraction. Furthermore, The reactions of selenides with Fe(ClO4)2·6H2O afforded two new iron(II) mononuclear metal complexes [Fe(TppSe)2][ClO4]2·3DMF (1) and [Fe(MeTppSe)2][ClO4]2·2DMF (2). Detailed structural analyses and magnetic susceptibility measurements confirm no spin transition from low-spin to the high-spin state between 2 and 300 K in two iron(II) complexes.  相似文献   

11.
The synthesis of the new complexes Cp*(dppe)FeCC2,5-C4H2SR (Cp* = 1,2,3,4,5-pentamethylcyclopentadienyl; dppe = 1,2-bis(diphenylphosphino)ethane; 2a, R = CCH; 2b, R = CCSi(CH3)3; 2c, R = CCSi(CH(CH3)2)3; 3a, R = CC2,5-C4H2SCCH; 3c, R = CC2,5-C4H2SCCSi(CH(CH3)2)3) is described. The 13C NMR and FTIR spectroscopic data indicate that the π-back donation from the metal to the carbon rich ligand increases with the size of the organic π-electron systems. The new complexes were also analyzed by CV and the chemical oxidation of 2a and 3c was carried out using 1 equiv of [Cp2Fe][PF6]. The corresponding complexes 2a[PF6] and 3c[PF6] are thermally stable, but 2a[PF6] was too reactive to be isolated as a pure compound. The spectroscopic data revealed that the coordination of large organic π-electron systems to the iron nucleus produces only a weak increase of the carbon character of the SOMO for these new organoiron(III) derivatives.  相似文献   

12.
The catalytic properties of a series of Fe(II) diimine complexes (diimine=N,N′-o-phenylenebis(salicylideneaminato), N,N′-ethylenebis(salicylideneaminato), N,N′-o-phenylenebisbenzal, N,N′-ethylenebisbenzal) in combination with ethylaluminoxane (EAO) for ethylene oligomerization have been investigated. Treatment of the iron(II) complexes with EAO in toluene generates active catalytic systems in situ that oligomerize ethylene to low-carbon olefins. The effects of reaction temperature, ratios of Al/Fe and reaction periods on catalytic activity and product distribution have been studied. The activity of complex FeCl2(PhCH=o-NC6H4N=CHPh) with EAO at 200°C is 1.35×105 g oligomers/mol Fe·h, and the selectivity of C4–10 olefins is 84.8%.  相似文献   

13.
Reactions of ferrocene bridged and substituted tetramethylcyclopentadiene ligands 1,1′-Fc(C5Me4H)2 (1) (Fc = 1,1′-ferrocenediyl) and (C5H5FeC5H4)C5Me4H (5) with Ru3(CO)12, Fe(CO)5, and Mo(CO)3(CH3CN)3 in refluxing xylene gave the corresponding trinuclear and tetranuclear complexes Fc[(C5Me4)M(CO)]2(μ-CO)]2 [M = Ru (2), Fe (3)], Fc[(C5Me4)Mo(CO)3]2 (4) and [(C5H5 FeC5H4)C5Me4M(CO)]2(μ-CO)2 [M = Ru (6), Fe (7)], [(C5H5FeC5H4)C5Me4Mo(CO)3]2 (8). Reactions of (3-indenyl)ferrocene (9) with Ru3(CO)12 or Fe(CO)5 in refluxing xylene or heptane, also gave the corresponding tetranuclear metal complexes [(C5H5FeC5H4)C9H6M(CO)]2(μ-CO)2 [M = Ru (10), Fe (11)]. The molecular structures of 2 and 3 were determined by X-ray diffraction analysis.  相似文献   

14.
The equilibrium constants of the reaction of cis, trans-[Ru(CO)2(PMe3)2(CH3)I] (Mc) with carbon monoxide to give cis, trans[Ru(CO)2(PMe3)2 (COMe)i] (Ac) and trans, trans[Ru(CO)2(PMe3)2(COMe)I] (At) were measured at various temperatures in toluene. The thermodynamic parameters are compared with those obtained for the isoelectronic complexes of iron, and the trend is discussed. The kinetics of the carbonylation reaction of Mc, as well as those of the inverse decarbonylation reaction of At were measured. The kinetics of the carbonylation of the new complex trans, trans-[Ru(CO)2(PMe3)2(CH3)I] (Mt) were also investigated. All the results afford further support to the previously proposed CO insertion mechanism occurring via methyl migration. The comparison of these kinetic results with those of isoelectronic complexes of iron indicates that ruthenium is more reactive than iron, which is reflected by its greater aptitude to act as catalyst in many processes.  相似文献   

15.
The novel alkynyldithiocarboxylate complexes [Fe(η5-C5H5)(S2CCCR) (dppm-P)] (3a,b) and [Fe(η5-C5H5)(S2CCCR)(PPh3)] (4a,b) were obtained through the insertion of CS2 into the iron-akynyl bond in the complexes [Fe(η5-C5H5)(CCR)(L)(L′] L, L′ = dppm R = Ph (1a), tBu(1b); L = (CO), L′ = (PPh3) R = Ph (2a), tBu (2b). Variable-temperature 31P{1H} NMR studies indicate the presence of two different isomers, [Fe(η5-C5H5)(η3-S,C,S′---S2CCCR)(L)(L′)] and [Fe(η5-C5H52-S,S′-S2CCCR)(L)(L′)], which rapidly interconvert at room temperature. The synthesis of the precursor complex [Fe(η5-C5H5)(CCtBu)(CO)(PPh3)] is also described.  相似文献   

16.
The reaction of [RuHCl(CO)(PPh3)3] with pyrimidine gives [RuHCl(CO)(PPh3)2(C4H4N2)]. The compound has been studied by IR, UV-Vis and X-ray crystallography. The molecular orbital diagram of the complex has been calculated with density functional theory (DFT). The spin-allowed singlet-singlet electronic transitions of the complex have been calculated with time-dependent DFT method, and the UV-Vis spectrum of the compound has been discussed on this basis. Emission of the compound was studied.  相似文献   

17.
We report a computational study at the OPBE/TZP level on the chemical bonding and spin ground-states of mono-nuclear iron(II) complexes with trispyrazolylborate and trispyrazolylmethane ligands. We are in particular interested in how substitution patterns on the pyrazolyl-rings influence the spin-state splittings, and how they can be rationalized in terms of electronic and steric effects. One of the main observations of this study is the large similarity of the covalent metal–ligand interactions for both the borate and methane ligands. Furthermore, we find that the spin-state preference of an individual transition-metal (TM) complex does not always concur with that of an ensemble of TM-complexes in the solid-state. Finally, although the presence of methyl groups at the 3-position of the pyrazolyl groups leads to ligand–ligand repulsion, it is actually the loss of metal–ligand bonding interactions that is mainly responsible for shifts in spin-state preferences.  相似文献   

18.
A pair of tetranuclear iron complexes consisting of two Fe2(Cl2bdt)(CO)5 subunits (Cl2bdt?=?3,6-dicholorobenzene-1,2-dithiolate) bridged by different cyclic 1,5-diaza-3,7-diphosphacyclooctane (P2N2) ligands were prepared and structurally characterized. In the solid state, the P2N2 ligands adopt a boat conformation, which results in rather short distances between the two Fe2(Cl2bdt)(CO)5 clusters that promotes electronic communication across the diphosphine ligand.  相似文献   

19.
The preparation and characterization of 5,6-substituted-1,10-phenanthrolines, phdtos = 5,6-bistosyl-1,10-phenanthroline (1) and phdbt = 5,6-dibenzyltiol-1,10-phenanthroline (2) are described. The synthesis of (1) was achieved in good yield via the corresponding dihydroxide and 2 was obtained by cross-coupling reaction of 5,6-dibromo-1,10-phenanthroline and benzylthiol mediated by a palladium catalytic system in refluxing toluene (120 °C). These phenanthroline derivatives were used as ligands to afford [FeII(phdtos)3](PF6)2 (5) and [FeII(phdbt)3](PF6)2 (6) complexes.  相似文献   

20.
Nickel(II) and palladium(II) form neutral 1?:?2 chelates with aromatic thiohydrazides, for example. thiobenzhydrazide, o-hydroxythiobenzhydrazide, furan-2-thiohydrazide, and thiophen-2-thiohydrazide. All the compounds are diamagnetic and have been characterized by elemental analysis and spectroscopic methods. o-Hydroxythiobenzhydrazido complexes of nickel(II) and palladium(II) were crystallized from DMSO and their structures were solved by X-ray diffraction. The complexes are isostructural with planar structures. Metal ion is linked to two identical deprotonated ligands through trans hydrazinic nitrogen and sulfur. Hydrogen of OH is involved in intramolecular hydrogen-bonding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号