首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reaction of PhN(CH2CO2Et)2 with cyclopentadienyl sodium in a 1:2 ratio yields N-bridging dicyclopentadienyl dianion [PhN(CH2COCp)2]2−, which subsequently reacts with M(CO)6 to give N-bridging dicyclopentadienyl metal dianions [PhN(CH2COCpM(CO)3)2]2− (M = Mo or W). Treatment of these metal dianions with Ph2SnX2 yields tetranuclear heterodimetallic complexes PhN(CH2COCpM(CO)3SnPh2X)2 (X = Cl or Br), while treatment with CH2(SnPh2Br)2 results in octanuclear heterodimetallic organometallamacrocycles [PhN(CH2COCpM(CO)3)2]2[(SnPh2)2CH2]2. All of these new compounds have been characterized by elemental analysis and spectroscopic properties. The crystal structure of complex [PhN(CH2COCpMo(CO)3)2]2[(SnPh2)2CH2]2 determined by X-ray crystallography indicates a novel 24-membered organometallic metallamacrocyclic ring system in which four Mo-Sn units are linked by two N-bridging dicyclopentadienyl ligands and two bridging methylene groups.  相似文献   

2.
A range of new small bite-angle diphosphine complexes, [M(CO)4{X2PC(R1R2)PX2}] (M = Mo, W; X = Ph, Cy; R1 = H, Me, Et, Pr, allyl, R2 = Me, allyl), have been prepared via elaboration of the methylene backbones in [M(CO)4(X2PCH2PX2)] as a result of successive deprotonation and alkyl halide addition. When X = Ph it proved possible to replace both methylene protons but for X = Cy only one substitution proved possible. This is likely due to the electron-releasing nature of the cyclohexyl groups but may also be due to steric constraints. Attempts to prepare the bis(allyl) substituted complex [Mo(CO)4{Ph2PC(allyl)2PPh2}] were only moderately successful. The crystal structures of nine of these complexes are presented.  相似文献   

3.
A facile synthesis of the novel selenium-capped trimolybdenum and tritungsten ring carbonyl clusters [Se2M3(CO)10]2− (M = Mo, 1; W, 4) have been achieved. The selenium-capped trimolybdenum cluster compound [Et4N]2[Se2Mo3(CO)10] ([Et4N]2[1]) can be obtained from the reaction of the trichromium cluster compound [Et4N]2[Se2Cr3(CO)10] with 4 equiv. of Mo(CO)6 in refluxing acetone. On the other hand, when [Et4N]2[Se2Cr3(CO)10] reacted with 4 equiv. of W(CO)6 in refluxing acetone, the planar cluster compound [Et4N]2[Se2W4(CO)18] ([Et4N]2[3]) was isolated, which could further transform to the tritungsten cluster compound [Et4N]2[Se2W3(CO)10] ([Et4N]2[4]) in good yield. Alternatively, clusters 1 and 4 could be formed from the reactions of the monosubstituted products [Et4N]2[Se2Cr2M(CO)10] (M = Mo; W, [Et4N]2[2]) with 3 equiv. of M(CO)6 in acetone, respectively. Complexes 1-4 are fully characterized by IR, 77Se NMR spectroscopy, and single-crystal X-ray analysis. Clusters 1, 2, and 4 are isostructural and each display a trigonal bipyramidal structure with a homometallic M3 ring (M = Mo, 1; W, 4) or a heterometallic Cr2W ring that is further capped above and below by μ3-Se atoms. Further, the intermediate planar complex 3 exhibits a Se2W2 square with each Se atom externally coordinated to one W(CO)5 group. This paper describes a systematic route to a series of selenium-capped trimetallic carbonyl clusters and the formation and the structural features of the resultant clusters are discussed.  相似文献   

4.
Complexes M(CCCSiMe3)(CO)2Tp′ (Tp′ = Tp [HB(pz)3], M = Mo 2, W 4; Tp′ = Tp [HB(dmpz)3], M = Mo 3) are obtained from M(CCCSiMe3)(O2CCF3)(CO)2(tmeda) (1) and K[Tp′].Reactions of 2 or 4 with AuCl(PPh3)/K2CO3 in MeOH afforded M{CCCAu(PPh3)}(CO)2Tp′ (M = Mo 5, W 6) containing C3 chains linking the Group 6 metal and gold centres.In turn, the gold complexes react with Co33-CBr)(μ-dppm)(CO)7 to give the C4-bridged {Tp(OC)2M}CCCC{Co3(μ-dppm)(CO)7} (M = Mo 7, W 8), while Mo(CBr)(CO)2Tp and Co33-C(CC)2Au(PPh3)}(μ-dppm)(CO)7 give {Tp(OC)2Mo}C(CC)2C{Co3(μ-dppm)(CO)7} (9) via a phosphine-gold(I) halide elimination reaction. The C3 complexes Tp′(OC)2MCCCRu(dppe)Cp (Tp′ = Tp, M = Mo 10, W 11; Tp′ = Tp, M = Mo 12) were obtained from 2-4 and RuCl(dppe)Cp via KF-induced metalla-desilylation reactions. Reactions between Mo(CBr)(CO)2Tp and Ru{(CC)nAu(PPh3)}(dppe)Cp (n = 2, 3) afforded {Tp(OC)2Mo}C(CC)n{Ru(dppe)Cp} (n = 2 13, 3 14), containing C5 and C7 chains, respectively. Single-crystal X-ray structure determinations of 1, 2, 7, 8, 9 and 12 are reported.  相似文献   

5.
The reaction of bis(pyrazol-1-yl)methane tetracarbonylmolybdenum(0) or tungsten(0) complexes with RSnCl3 (R=Ph, Cl) at room temperature yielded heterobimetallic complexes CH2(Pz)2M(CO)3(Cl)(SnCl2R) (Pz represents substituted pyrazole; M=Mo or W; R=Ph or Cl) in good yields, which have been characterized by elemental analysis, 1H NMR and IR spectroscopy. The reaction of bis(3,5-dimethyl-4-halopyrazol-1-yl)methane tetracarbonyl tungsten with PhSnCl3 did not take place even in refluxing CH2Cl2. The electronic and steric characteristics of substituents on the pyrazole ring remarkably influence the structures of the products. The structures of CH2(3,5-Me2-4-BrPz)2W(CO)3(Cl)(SnCl3) (8) and CH2(4-BrPz)2Mo(CO)3(μ-Cl)(SnCl2Ph) (17) (Pz: pyrazole) determined by X-ray crystallography show that no chlorine-bridged W---Sn bond is observed in complex 8, while one chlorine-bridged Mo---Sn bond exists in complex 17. The Sn---M bond length is 2.7438(5) Å in complex 8 (W---Sn) and 2.7559(4) Å in complex 17 (Mo---Sn).  相似文献   

6.
Syntheses of [Me3SbM(CO)5] [M = Cr (1), W (2)], [Me3BiM(CO)5] [M = Cr (3), W (4)], cis-[(Me3Sb)2Mo(CO)4] (5), [tBu3BiFe(CO)4] (6), crystal structures of 1-6 and DFT studies of 1-4 are reported.  相似文献   

7.
The synthesis, characterization and chemistry of novel η3-allyl metal complexes (M = Ir, Rh) are described. The structures of compounds (C5Me4H)Ir(PPh3)Cl2 (1), (C5Me4H)Ir(PPh3)(η3-1-methylallyl)Br (3a), (C5Me4H)Ir(η4-1,3,5-hexatriene) (8), and (C5Me5)Rh(η3-1-ethylallyl)Br (5d) have been determined by X-ray crystallography. Structural comparisons among these complexes are discussed. It is found that the neutral metal allylic complex [CpIrCl(η3-methylallyl)] (5) ionizes in polar solvents to give [CpIr(η3-methylallyl)]+Cl (6) and reaches equilibrium (5 ? 6) at room temperature. Addition of tertiary phosphine ligands to neutral complexes such as [CpIr(η3-methylallyl)Cl], results in the formation of stable ionic phosphine adducts. Factors such as solvent, length of carbon chain, temperature and light are discussed with respect to the formation, stability and structure of the allyl complexes.  相似文献   

8.
The synthesis and characterisation of complexes of two distibinopropanes R2Sb(CH2)3SbR2 (R = Me or Ph) with a variety of metal carbonyls is described. These include cis-[M(CO)4{R2Sb(CH2)3SbR2}] (M = Cr, Mo or W), [{Fe(CO)4}2{μ-R2Sb(CH2)3SbR2}], [{Ni(CO)3}2{μ-R2Sb(CH2)3SbR2}], [Co2(CO)6{Ph2Sb(CH2)3SbPh2}], [Co2(CO)4{Me2Sb(CH2)3SbMe2}3][Co(CO)4]2 and [Mn2(CO)8{Ph2Sb(CH2)3SbPh2}]. The complexes have been characterised by analysis, mass spectrometry, IR and multinuclear NMR spectroscopy as appropriate. Comparison of the spectroscopic data on these complexes with those of other stibine complexes and with complexes of Group 16 ligands has been used to establish the relative electronic properties of the distibines.  相似文献   

9.
10.
The haptotropic migration of Cr(CO)3, Mo(CO)3 and W(CO)3 moieties on a substituted phenanthrene has been studied theoretically using gradient-corrected density functional theory. The stationary points (minima and transition states) on the energy hypersurface characterizing the migrating process of the metal fragment over the aromatic system have been located. Furthermore, the energetic and structural differences between complexes of the three metals Cr, Mo and W and the effect of a high substitution of one arene ring on the reaction energy profile have been analyzed. The possibility to design a molecular switch based on the substituent pair R = O/OH is investigated. It is concluded that the Mo and W complexes undergo a haptotropic migration more easily than the corresponding Cr system.  相似文献   

11.
Thirteen novel 3d-4f heteronuclear coordination polymers based on the pyridine-2,6-dicarboxylic acid (H2pda) and imidazole ligands, HIm[(pda)3MLn(Im)2(H2O)2]·3H2O (Im = imidazole; M = Co, Ln = Pr (1), Gd (2), Dy (3), Er (4); M = Mn, Ln = Pr (5), Sm (6), Gd (7), Dy (8), Er (9)), HIm[(pda)3CoSm(Im)2(H2O)2]·2H2O (10), [(Im)4M(H2O)2][(pda)4La2(H2O)2]·2H2O (M = Co (11), Mn (12)), and [(pda)6Co3Pr2(H2O)6]·6H2O (13), have been prepared and structurally characterized. X-ray crystallographic analyses revealed that these complexes display four different types of structures. Complexes 1-9 are isostructural, and possess 1-D chain structures constructed by alternately arrayed nine-coordinated Ln(III) (Ln = Pr, Sm, Gd, Dy, Er) and six-coordinated M(II) (M = Mn, Co) ions. Complex 10 exhibits a unique one-dimensional structure, in which two independent chains are parallel viewed down the a-axis and anti-parallel viewed down the c-axis. Complexes 11 and 12 are isostructural and display 1-D homometallic chain structures. Complex 13 is a 3D framework fabricated through PrN3O6 and CoO6 polyhedrons as building blocks. The variable-temperature solid-state dc magnetic susceptibilities of complexes 2, 3, 4, 9 and 13 have been investigated. Antiferromagnetic exchange interactions were determined for these five complexes.  相似文献   

12.
Complexes [MHCpBz(CO)2(PR3)] (R = CH3, M = Mo (1); M = W (2); R = Ph, M = Mo (3); CpBz = C5(CH2Ph)5) were prepared by thermal decarbonylation of the corresponding [MHCpBz(CO)3] in the presence of trimethyl- or triphenyl-phosphine. In solution the NMR spectra of all compounds show the presence of cis and trans isomers that interconvert at room temperature. In the solid state the molecular structures obtained for compounds 1 and 2 correspond to the trans isomers, while for 3 the cis isomer is present.The electrochemistry of [MoHCpBz(CO)2(PMe3)] (1), [MoHCpBz(CO)3] (5), [WHCpBz(CO)3] (6), [WCpBz(CO)3]2 (7), and [MCpBz(CO)3(CH3CN)]BF4 (8), is described. The cleavage of M-H bonds takes place upon oxidation or reduction. Cations [MCpBz(CO)2L(CH3CN)]+ form in solvent-assisted M-H bond breaking upon oxidation of [MHCpBz(CO)2L] (L = PMe3, CO). Reduction of [MHCpBz(CO)3] gives [MCpBz(CO)3] and H2. The presence of one PMe3 ligand lowers the reduction potential and precludes the observation of reduction waves.  相似文献   

13.
The novel silicon-, germanium- and tin-containing imido alkyl complexes of tungsten of the type (ArN)2W(CH2EMe3)2 (; E = Si (1), Ge (2), Sn (3)) have been prepared by the reactions of (ArN)2WCl2(dme) (dme = 1,2-dimethoxyethane) with heteroelement-containing alkyllithium or Grignard reagents Me3ECH2Li (E = Si, Ge), Me3ECH2MgCl (E = Ge, Sn). The title compounds were isolated in high yields as crystalline solids and characterized by elemental analysis, IR, 1H, 13C, 29Si and 119Sn NMR spectroscopy and X-ray diffraction studies. The geometry of the W atoms in the compounds can be described as a distorted tetrahedron.  相似文献   

14.
We describe reactions of [99mTc(H2O)3(CO)3)]+ (1) with Diels-Alder products of cyclopentadiene such as “Thiele’s acid” (HCp-COOH)2 (2) and derivatives thereof in which the corresponding [(Cp-COOH)99mTc(CO)3)] (3) complex did form in water. We propose a metal mediated Diels-Alder reaction mechanism. To show that this reaction was not limited to carboxylate groups, we synthesized conjugates of 2 (HCp-CONHR)2 (4a-c) (4a, R = benzyl amine; 4b, R = Nα-Boc-l-2,3-diaminopropionic acid and 4c, R = glycine). The corresponding 99mTc complexes [(4a)99mTc(CO)3)] 6a, [(4b)99mTc(CO)3)] 6b and [(4c)99mTc(CO)3)] 6c have been prepared along the same route as for Thiele’s acid in aqueous media demonstrating the general applicability of this synthetic strategy. The authenticity of the 99mTc complexes on the no carrier added level have been confirmed by chromatographic comparison with the structurally characterized manganese or rhenium complexes.Studies of the reaction of 1 with Thiele’s acid bound to a solid phase resin demonstrated the formation of [(Cp-COOH)99mTc(CO)3)] 3 in a heterogeneous reaction. This is the first evidence for the formation of no carrier added 99mTc radiopharmaceuticals containing cyclopentadienyl ligands via solid phase syntheses. Macroscopically, the manganese analogue 5a and the rhenium complexes 5b-c have been prepared and characterized by IR, NMR, ESI-MS and X-ray crystallography for 5a (monoclinic, P21/c, a = 9.8696(2) Å, b = 25.8533(4) Å, c = 11.8414(2) Å, β = 98.7322(17)°) in order to unambiguously assign the authenticity of the corresponding 99mTc complexes.  相似文献   

15.
The complexes [W(CO)5(Ph2SbX)], X = Cl (1), Br (2) and I (3) were prepared by reaction of [W(CO)5(tetrahydrofuran)] with Ph2SbX. The structures of 1-3 were studied by X-ray diffraction. In the crystals there are weak contacts between the oxygen atoms of the CO ligands and antimony atoms of neighbouring molecules. DFT calculations were carried out for 1 using gradient corrected functional B3LYP. The bonding between Ph2SbCl and the W(CO)5 fragment in 1 was analysed using charge decomposition analysis.  相似文献   

16.
Tungsten and molybdenum complexes [M(CO)2(dpphen)(dbf)2] (M = W 1 or Mo 2 ; dpphen = 4,7‐diphenyl‐1,10‐phenanthroline; dbf = dibutylfumarate) have been synthesized and structurally characterized by X‐ray diffraction analysis. In both complexes which have similar structure, the metal atom co‐ordination is distorted octahedral with dpphen and two CO groups in the equatorial plane and the metal atom binds in an η2‐fashion to the C–C bonds of two dbf ligands. The two C–C bonds are almost mutually orthogonal. The two complexes are different in conformation which result from face selection of the two dbf ligands for coordination to the metal atom.  相似文献   

17.
A series of heterodimetallic complexes of general formula (C5R5)M(μ-CO)3RuC5Me5 (M = Cr, Mo, W; R = Me, Et) has been prepared in good yields by the reaction of [C5R5M(CO)3] with [C5Me5Ru(CH3CN)3]+. (C5Me4Et)W(μ-CO)3Ru(C5Me5) was characterized by a crystal structure determination. The W---Ru bond length of 2.41 Å is consistent with the formulation of a metal-metal triple bond, while the unsymmetrical bonding mode of the three bridging carbonyl groups reflects the inherent non-equivalence of the two different C5R5M-units. Using [CpRu(CH3CN)3]+ or [CpRu(CO)2(CH3CN)]+ as the cationic precursor leads to the formation of dimetallic species (C5R5)M(CO)5RuC5H5 with both bridging and terminal carbonyl groups.  相似文献   

18.
19.
The literature data on X substituent influence on the 1H, 29Si and 15N NMR chemical shifts (δ) and coupling constants (J) of Si-substituted silatranes , as well as M-N bond lengths (d) in atranes (M = C, Si, Ge, Sn, Pb) have been analyzed. It was established for the first time that the δ, J and d values depend not only on the inductive and resonance effects but also on the polarizability of X substituents. The polarizability contribution ranges from 8% to 25%.  相似文献   

20.
New tetra‐ and octasubstituted nitrido(phthalocyaninato)metal(V) complexes RnPcMN (M = Re, Mo, W) were synthesized to obtain soluble nitrido‐bridged phthalocyanines. Phthalocyanines with nitrido bridges between rhenium and boron, aluminium, gallium and indium, respectively, were synthesized from nitrido(tetra‐tert.‐butylphthalocyaninato)rhenium(V) complex, tBu4PcReN and suitable electrophilic reagents like BCl3, B(C6F5)3, BPh3, BEt3, AlCl3, GaCl3, GaBr3, InCl3, etc. The nitrido‐bridged compounds prepared show different stabilities depending on the substituents at the boron atom. Additionally, the possibility to increase the nucleophilicity of (C5H11)8PcWN by reducing this complex with C8K was studied. The reaction of the reduced complex with electrophiles, e.g. with tBuMeSiCl, Ph3SiCl and Me3GeCl indicates the formation of nitrogen‐bridged complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号