首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
赖衍帮  丁益民  王洪宇 《化学进展》2014,(10):1673-1689
近年来,苯并[1,2-b:4,5-b']二噻吩(benzo[1,2-b:4,5-b']dithiophene,BDT)作为构筑给体-受体结构有机半导体材料的优良电子给体,受到越来越多的重视,已广泛应用于场效应晶体管和有机光伏电池等领域。BDT类有机共轭材料具有优良的能级结构,同时又具有较高的载流子迁移率,目前报道的基于BDT的有机共轭聚合物的最高光电转换效率达到9.2%(单节光伏器件的最高效率),显示了其在有机太阳能电池领域巨大的应用前景。本文从BDT的结构修饰出发,系统地综述了基于BDT的有机光伏材料的最新研究进展,重点讨论BDT类光伏材料能级结构和聚集态形貌对光电性能的影响。  相似文献   

2.
有机太阳能电池(organic solar cell,OSC)是由有机材料构成活性层的太阳能电池.苯并[1,2-b:4,5-b']二噻吩(benzo[1,2-b:4,5-b']dithiophene,BDT)由于具有较大的刚性平面共轭结构,可以显著提高π电子的离域能力和分子间的π-π相互作用,且易化学修饰,合成方便,成为太阳能电池给体材料研究中的一个"明星分子"单元.目前,已报道的基于BDT共轭单元的有机光伏器件(organic photovoltaic device,OPV)的光电转化效率(power conversion efficiency,PCE)最高已达到9.95%,应用前景巨大.综述了BDT基小分子有机太阳能电池(small molecule organic solar cell,SM-OSC)活性层材料近年来的研究进展,并简要分析了小分子由于主链、侧链、封端基团的差异对器件性能的不同影响.  相似文献   

3.
《高分子学报》2021,52(10):1262-1282
近年来有机太阳能电池发展迅速,活性层材料起到至关重要的作用.在众多活性层材料中,由于其化学结构确定、能级和吸收易调控以及其特殊的电子云分布等特点,寡聚物型A-D-A结构活性层材料成为领域研究的热点和重点.本文围绕A-D-A结构寡物聚型小分子光伏材料,首先对基于寡聚噻吩以及苯并[1,2-b:4,5-b']二噻吩的A-D-A给体材料进行系统的分析和讨论,对分子的结构-性能关系进行总结;然后讨论基于芴和苯并[1,2-b:4,5-b']二噻吩的两类A-D-A受体材料;总结了我们基于A-D-A分子叠层器件进展;最后,从能量转换效率、器件稳定性、柔性及大面积器件等方面对有机太阳能电池的发展进行了展望.  相似文献   

4.
制备了聚({4,8-双[(2,5,8,11,14,17,20-七氧二十二烷-22-基)氧基]苯并[1,2-b∶4,5-b']二噻吩}-交替-[2,5-二(噻唑-2-基)吡嗪])(P7O-2N-2N)和聚({4,8-双[(2,5,8,11,14,17,20-七氧二十二烷-22-基)氧基]苯并[1,2-b∶4,5-b']二噻吩}-交替-[3,6-双(5-溴-2-噻吩基)-1,2,4,5-四嗪])(P7O-4N)2个亲水性共轭聚合物, 通过调节主链含氮杂环上氮原子的位置, 系统研究了主链结构对材料吸收光谱、 能级、 氢结合自由能及光催化性能的影响. 研究发现, 与P7O-2N-2N相比, P7O-4N表现出更强的链间聚集、 更低的氢结合自由能及更好的光催化制氢性能.  相似文献   

5.
采用密度泛函理论(DFT)的B3LYP/6-31G(d)方法对以低聚噻吩为端基、 苯并二噻吩(TPT)和并三噻吩(TTT)为共轭桥、 炔键为连接臂的20个模型化合物进行了计算研究. 在优化中性与离子态几何构型基础上, 获得了前线轨道能级、 电离能(IPs)、 电子亲和势(EAs)、 空穴/电子重组能(λhe)、 载流子迁移率(μhe)及吸收光谱等信息. 结果表明, 炔键的引入及端基低聚噻吩的增加对LUMO能级的调控作用较为显著, 而共轭桥的类型对HOMO能级影响较大; 合理选择端基、 共轭桥和连接臂等结构单元可对该类材料吸光波段及强度进行有效调节. 一维电荷传输模型结果表明, 所设计的化合物均是潜在的双极性有机半导体材料, 其中2,7-二([2,2':5',2'-三噻吩]-5-基)苯并[1,2-b:6,5-b']二噻吩(A3)和2,7-二(二噻吩并噻吩-2-基乙炔基)苯并[1,2-b:6,5-b']二噻吩(a-3)具有较高的电子迁移率, 值得进一步的实验探索研究.  相似文献   

6.
设计并通过Stille缩聚方法合成了一种基于四氟苯和4,8-双(5-(2-乙基己基)噻吩-2-基)-苯并[1,2-b:4,5-b’]二噻吩单元的推拉电子型宽带隙聚合物(PBDT4F)作为聚合物太阳能电池的给体材料。用核磁共振氢谱(1H-NMR)、凝胶渗透色谱(GPC)、热重分析、紫外-可见吸收光谱和循环伏安法等对其进行了表征。结果表明:PBDT4F对400~600 nm短波长光具有强吸收能力,并且具有低的最高占有轨道(HOMO)能级和适合的最低未占有轨道(LUMO)能级。基于PBDT4F为给体、有机小分子(5Z,5’Z)-5,5’-((7,7’-(4,4,9,9-四辛基-4,9-二氢-s-茚并[1,2-b:5,6-b’]二噻吩-2,7-二基)双(苯并[c][1,2,5]噻二唑-7,4-二基)双(亚甲叉))双(3-乙基-2-硫代-4-噻唑烷二酮)(O-IDTBR)为受体的共混活性层的光伏器件取得了0.986 V的开路电压和2.58%的光电转化效率。  相似文献   

7.
为了不断提高聚合物太阳能电池的光电转化效率,研究人员设计并合成了种类众多的给/受体单元来制备共轭聚合物材料.其中,基于苯并[1.2-b:4,5-b′]二噻吩(BDT)单元的聚合物材料在有机太阳能电池器件中取得了十分突出的光电转化效率,显示了巨大的应用前景.相比于柔性侧基(如烷氧基或烷基)取代的BDT单元而言,基于二维共轭结构BDT的共轭聚合物通常有更好的热稳定性,更宽的吸收光谱,较低的HOMO能级以及更高的空穴迁移率,因而表现出更加优异的光伏性能,最近报道的由二维共轭BDT单元共聚物制备的聚合物太阳能电池可以获得10%以上的光电转化效率.本文首先简要介绍了二维共轭结构BDT单元的合成方法,然后总结了近年来基于二维共轭结构BDT单元的共轭聚合物及其在太阳能电池中的应用.  相似文献   

8.
Ye  Linglong  Li  Xueshan  Cai  Yunhao  Ryu  Hwa Sook  Lu  Guangkai  Wei  Donghui  Sun  Xiaobo  Woo  Han Young  Tan  Songting  Sun  Yanming 《中国科学:化学(英文版)》2020,63(4):483-489
Benzo[1,2-b:4,5-b′]dithiophene(BDT) has been widely used to construct donor-acceptor(D-A) copolymers in organic solar cells(OSCs). However, benzo[1,2-b:4,5-b′]difuran(BDF), an analogue of BDT, has received less attention than BDT. The photovoltaic performance of BDF copolymers has lagged behind that of BDT copolymers. Here, we designed and synthesized two BDF copolymers, PBF1-C and PBF1-C-2Cl. PBF1-C-2Cl, which is composed of BDF and benzo[1,2-c:4,5-c′]dithiophene-4,8-dione connected by a chlorinated thiophene π-bridge, displays a low-lying highest occupied molecular orbital energy level,which helps in yielding a high open-circuit voltage(V_(oc)) in OSCs. As a result, when blended with Y6, PBF1-C-2Cl-based devices showed a high V_(oc) of 0.83 V and a power conversion efficiency(PCE) of 13.10%. To the best of our knowledge, the PCE of 13.10% is among the highest efficiency values for OSCs based on BDF copolymers.  相似文献   

9.
正有机太阳能电池具有成本低、半透明、可印刷制备大面积柔性器件等优势,是一种极具发展前景的光伏技术~1。2015年,占肖卫课题组创建了以明星分子3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']dithiophene(ITIC) 2为代表的稠环电子受体这一新颖受体体系,突破了有机太阳能电池在受体材料上所受到的瓶颈制约,  相似文献   

10.
设计并合成了4个基于含硫芳杂稠环化合物的可溶性共轭齐聚物,即以3-十一烷基苯并[d,d’]噻吩并[3,2-b;4,5-b ’]并二噻吩(BTTT)为末端芳香单元,噻吩(T)、二噻吩(bT)、N-十二烷基-二噻吩并[3,2-b]吡咯(TP)或2,5-双(3-十二烷基噻吩)[3,2-b]并二噻吩 (qT)为中间芳香单元的...  相似文献   

11.
非富勒烯小分子受体(SMAs)有序聚集决定聚合物/非富勒烯共混体系光伏电池的双分子复合几率。 然而,由于非对称相分离聚合物趋于优先形成网络,抑制小分子受体分子结晶。 在聚[(2,6-(4,8-二(5-(2-乙基己基噻吩-2-基)苯并[1,2-b:4,5-b']二噻吩))-alt-(5,5-(1',3'-二-2-噻吩基-5',7'-二(2-乙基己基)苯并[1',2'-c:4',5'-c']二噻吩-4,8-二酮))](PBDB-T)/9-二(2-亚甲基(3-(1,1-二氰基亚甲基)-6,7-二氟-茚酮))-5,5,11,11-四(4-己基苯基)-二噻吩并[2,3-d:2',3'-d']-s-引达省[1,2-b:5,6-b']二噻吩(IT-4F)共混体系,四氢呋喃蒸汽处理可提高IT-4F结晶性,150 ℃热退火可提高PBDB-T的结晶性。 因此,依次利用蒸汽退火和热退火处理薄膜,诱导小分子先结晶、聚合物后结晶,从而降低PBDB-T对小分子扩散的限制,构建高结晶互穿网络结构。 形貌优化后降低了双分子复合,器件光电转换效率从5.95%提高至7.18%。  相似文献   

12.
综述了以p-型共轭聚合物为给体、n-型有机半导体为受体的非富勒烯聚合物太阳电池光伏材料最新研究进展,包括n-型共轭聚合物和可溶液加工小分子n-型有机半导体(n-OS)受体光伏材料,以及与之匹配的p-型共轭聚合物给体光伏材料.介绍的n-型共轭聚合物受体光伏材料包括基于苝酰亚胺(BDI)、萘酰亚胺(NDI)以及新型硼氮键连受体单元的D-A共聚物受体光伏材料,目前基于聚合物给体(J51)和聚合物受体(N2200)的全聚合物太阳电池的能量转换效率最高达到8.26%.n-OS小分子受体光伏材料包括基于BDI和NDI单元的有机分子、基于稠环中心给体单元的A-D-A型窄带隙有机小分子受体材料等.给体光伏材料包括基于齐聚噻吩和苯并二噻吩(BDT)给体单元的D-A共聚物,重点介绍与窄带隙A-D-A结构小分子受体吸收互补的、基于噻吩取代BDT单元的中间带隙二维共轭聚合物给体光伏材料.使用中间带隙的p-型共轭聚合物为给体、窄带隙A-D-A结构有机小分子为受体的非富勒烯聚合物太阳电池能量转换效率已经突破12%,展示了光明的前景.最后对非富勒烯聚合物太阳电池将来的发展进行了展望.  相似文献   

13.
有机忆阻器具有超快速度、超低功耗、非易失性存储等优势,有希望成为突破当前冯·诺依曼瓶颈和摩尔定律极限的关键电子元器件。利用2,6-双(三甲基锡)-4,8-双(5-己基-2-噻吩)-苯并[1,2-b:4,5-b’]二噻吩,4,9-二溴-6,7-双苯基[1,2,5]噻二唑-[3,4-g]喹喔啉和4,8-二溴苯并[1,2-c:4,5-c’]双[1,2,5]噻二唑,通过Stille偶联法合成得到两种新型二维共轭给体-受体型聚合物pBDTT-PTQx和pBDTT-BBT,通过选取位阻较小的取代基、长度较短的烷基链和强推拉电子效应的共轭给体-受体单元优化分子共平面性,并对比研究了共平面性对材料阻变特性的影响。两种材料均具有高鲁棒性的Flash型阻变行为,可循环擦写100圈以上,其中pBDTT-BBT具有更好的分子共平面性,器件表面均方粗糙度仅为1.71 nm,开/关电压的扰动系数仅为9.4%和6.7%,高/低阻态的扰动系数为13.7%和9.4%,相较于PBDTT-PTQx,开/关电压与高/低阻值的稳定性和均一性获得很大提升。  相似文献   

14.
以苯并[1,2-c:4,5-c']二[1,2,5]噻重氮和吡嗪并[2,3-g]喹喔啉为电子受体(A),噻吩、噻吩并[3,2-b]噻吩和二噻吩并[2,3-b:2',3'-d]噻吩为电子供体(D),设计了6种D-A型共轭聚合物.采用B3LYP方法,研究了这6种聚合物的几何结构和电子性质.D-A型共轭聚合物的几何结构和电子结构与电子供体和电子受体的性质,特别是与其提供电子和接受电子的能力密切相关.聚合物的能隙主要受键长交替控制,键长交替越小,能隙越窄.所设计的6种聚合物中,p-BBT-TT具有较窄的能隙(0.48 eV)、较小的载流子有效质量和相对较大的能带宽度,具备理论上的良好导电性能,可能是潜在的优良导电聚合物材料.  相似文献   

15.
二噻吩[3,2-b:2′,3′-d]并吡咯(Dithieno[3,2-b:2′,3′-d]pyrrole,DTP)分别与3种受体单元聚合得到聚合物P1~P3,受体单元分别为:吡咯并吡咯二酮(DPP)、二噻吩苯并噁二唑(DTBO)和喹喔啉衍生物(TQ).研究表明,3种聚合物都有较窄的带隙(P1:1.23 e V,P2:1.51 e V,P3:1.50 e V),有利于活性层材料对太阳光的吸收,其中P1获得了最宽的吸收(近1000 nm).将P1~P3与PC71BM共混制备光伏器件,当给受体比例为1∶3时,基于P1的光伏器件短路电流密度(short-circuit current density,JSC)为15.82 m A/cm~2,开路电压(open-circuit voltage,VOC)为0.38 V,能量转化效率(power conversion efficiency,PCE)达到3.33%,为3种聚合物中最高的效率.对于聚合物P2和P3,在给受体比例为1∶2时,光伏性能最好,此时P2与P3的PCE值分别为1.20%和1.37%,导致较低光电转换效率的因素是短路电流密度JSC(P2:9.70 m A/cm~2,P3:9.21 m A/cm~2)和开路电压VOC(约0.3 V)过低.  相似文献   

16.
耿延候 《高分子科学》2017,35(4):480-489
Three acceptor-donor-acceptor(A-D-A) conjugated oligomers, i.e., O1, O2 and O3, have been synthesized using diketopyrrolopyrrole(DPP) as an electron-acceptor unit, and naphtho[1,2-b:5,6-b']dithiophene(NDT), anthra[1,2-b:5,6-b']dithiophene(ADT) or dithieno[3,2-b:3',2'-b']naphtho[1,2-b:5,6-b']dithiophene(DTNDT) as electron-donor unit. These oligomers exhibit identical highest occupied molecular orbital(HOMO) and lowest unoccupied molecular orbital(LUMO) energy levels, which were ca.-5.1 and-3.3 eV, respectively. Upon thermal annealing, all three oligomers formed thin films with ordered microstructures, and their organic thin film transistors(OTFTs) exhibited p-type transport behavior. The mobility was increased with an extension of the size of D-units. O3 showed the best OTFT performance with the mobility of up to 0.20 cm~2·V~(-1)·s~(-1). The film quality of O3 was improved by adding 1 wt% poly(methylmethacrylate)(PMMA). In consequence, the mobility of the O3-based devices was further enhanced to 0.30 cm~2·V~(-1)·s~(-1).  相似文献   

17.
通过Stille聚合反应合成了含有苯并[1,2-b:4,5-b']二噻吩和二噻吩邻苯二甲酰亚胺的D-A结构平面共聚物PBDTPhBT.该聚合物热稳定性和在常见有机溶剂中的溶解性良好、在380~580nm范围内有强吸收.分子模拟计算的结果表明,聚合物主链具有较好的平面型.PBDTPhBT的光学带隙为2.10eV、用电化学方法测量的HOMO能级为5.23eV.以聚合物PBDTPhBT为给体、PC70BM为受体(给受体重量比为1:1)、Ca/Al为负极制备了本体异质结聚合物太阳能电池.在AM1.5,100mWcm2光照条件下器件的开路电压和短路电流分别为0.79V和5.63mAcm2,能量转换效率达到了1.76%.  相似文献   

18.
以噻并[3,2-b]噻吩为共轭侧基,苯并[1,2-b:4,5-b′]二噻吩和磺酰基取代的噻并[3,4-b]噻吩为共聚单元,在Pd2(dba)3-P(o-tol)3催化下,经Stille缩聚反应合成了二维窄带隙醌式共聚物(PTTBDT-TTS, 1),其结构和性能经1H NMR,元素分析,凝胶渗透色谱(GPC), UV-Vis, TGA和循环伏安法表征。结果表明:1具有良好的成膜性和热稳定性;1在300~800 nm对太阳光有较强吸收,HOMO能级为-5.45 eV;倒置光伏器件(1/PC-61-BM)的开路电压为0.95 V,能量转换效率约为1.07%。  相似文献   

19.
设计合成了3种主链相同、侧基不同的Donor(D)-π-Acceptor(A)型共轭聚合物:聚[(4,8-二辛氧基苯[1,2-b;3,4-b]二噻吩)-(9-(4-氰基苯基)-9H-咔唑)](PBDTCz-CN)、聚[(4,8-二辛氧基苯[1,2-b;3,4-b′]二噻吩)-(9-(4-醛基苯基)-9H-咔唑)](PBDTCz-CHO)和聚[(4,8-二辛氧基苯[1,2-b;3,4-b]二噻吩)-(9-(4-硝基苯基)-9H-咔唑)](PBDTCz-NO_2)。通过调变侧基上的受体基团,比较了氰基、醛基、硝基对聚合物光学和电学性能的影响,讨论了影响聚合物光电转换效率的主要因素。3种聚合物的光学带隙和线性吸收系数依次分别为2.32 eV,152.0 L/(g·cm);2.43 eV,58.5 L/(g·cm)和2.25 eV,85.5 L/(g·cm)。在这些聚合物中,彼此间的最高占据分子轨道(HOMO)能级差距很小,PBDTCz-NO_2的最低未占据分子轨道(LUMO)能级最低(-3.38eV)。在100 W/m~2模拟太阳光的照射下,基于这些聚合物的光伏器件(器件结构:ITO/PEDOT:PSS/Polymer:[70]PCBM(1:2)/Ca/A1)的光电转换效率分别为0.44%(PBDTCz-CN)、0.001 8%(PBDTCz-CHO)和0.23%(PBDTCz-NO_2)。低的光电转换效率主要归因于低的短路电流,而影响短路电流的主要原因有自身吸光性能的限制和弱的π-π堆砌作用。  相似文献   

20.
合成了6,12-二(三乙基硅乙炔基)二苯并[d,d’]苯并[1,2-b;4,5-b’]二噻吩,并通过熔点测定、元素分析、核磁共振谱、质谱及X-单晶衍射分析对其进行了表征,同时对其作为有机场效应管(OFET)材料的性能进行了测试.结果表明,该材料在器件中载流子迁移率高达0.53 cm2/Vs,开关比为105.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号