首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metal-molecule-metal junctions were fabricated by contacting Au-supported alkyl or benzyl thiol self-assembled monolayers (SAMs) with an Au-coated atomic force microscope (AFM) tip. The tip-SAM microcontact is approximately 15 nm(2), meaning the junction contains approximately 75 molecules. Current-voltage (I-V) characteristics of these junctions were probed as a function of SAM thickness and load applied to the microcontact. The measurements showed: (1) the I-V traces were linear over +/-0.3 V, (2) the junction resistance increased exponentially with alkyl chain length, (3) the junction resistance decreased with increasing load and showed two distinct power law scaling regimes, (4) resistances were a factor of 10 lower for junctions based on benzyl thiol SAMs compared to hexyl thiol SAMs having the same thickness, and (5) the junctions sustained fields up to 2 x 10(7) V/cm before breakdown. I-V characteristics determined for bilayer junctions involving alkane thiol-coated tips in contact with alkane thiol SAMs on Au also showed linear I-Vs over +/-0.3 V and the same exponential dependence on thickness. The I-V behavior and the exponential dependence of resistance on alkyl chain length are consistent with coherent, nonresonant electron tunneling across the SAM. The calculated conductance decay constant (beta) is 1.2 per methylene unit ( approximately 1.1 A(-)(1)) for both monolayer and bilayer junctions, in keeping with previous scanning tunneling microscope and electrochemical measurements of electron transfer through SAMs. These measurements show that conducting probe-AFM is a reliable method for fundamental studies of electron transfer through small numbers of molecules. The ability to vary the load on the microcontact is a unique characteristic of these junctions and opens opportunities for exploring electron transfer as a function of molecular deformation.  相似文献   

2.
AFM/KPM charging and charge mapping of polyamine charge carriers in a PMMA matrix is reported. Selective charging of the designed charge carrier is demonstrated at concentrations down to a single molecule. This works constitutes electrochemical charging and detection of single redox-active organic molecules in low dielectric matrices by probe microscopy.  相似文献   

3.
Surface forces between LB films of metal-chelating lipids in water have been studied using colloidal probe atomic force microscopy. The LB films of an amphiphile functionalized by the iminodiacetic acid group were prepared on hydrophobic glass substrates. The electric double layer repulsion operated between these LB film surfaces changed depending on pH reflecting the different protonation states of the iminodiacetic acid groups. The titration curve of the iminodiacetic acid monolayer was obtained from the force profiles. The Cu2+ complexation process was also monitored by measuring the force profiles at various Cu2+ ion concentrations.  相似文献   

4.
We report on a novel technique to nucleate nanometer-sized droplets on a solid substrate and to image them with minimal perturbation by noncontact atomic force microscopy (NC-AFM). The drop size can be accurately controlled, thus permitting hysteresis measurements. We have studied the nanoscale wettability of several methyl-terminated substrates prepared by the self-assembly of organic molecules. These substrates are alkyltrichlorosilanes on silica, alkylthiols on gold, alkyl chains on hydrogen-terminated silicon, and crystalline hexatriacontane chains on silica. For each of these systems, we report a deviation of the wetting contact angle from the macroscopic value, and we discuss this effect in term of mesoscale surface heterogeneity and long-range solid-liquid interactions.  相似文献   

5.
Tapping-mode atomic force microscopy was used to study the time-dependent changes in the structure of fibrinogen under aqueous conditions following adsorption on two model surfaces: hydrophobic graphite and hydrophilic mica. Fibrinogen was observed in the characteristic trinodular form, and the dimensions of the adsorbed molecules were consistent with previously reported values for these surfaces. On the basis of the differences in the relative heights of the D and the E domains, four orientation states were observed for fibrinogen adsorbed on both the surfaces. On graphite, the initial asymmetric orientation states disappeared with spreading over time. Some small lateral movements of the adsorbed proteins were observed on mica during repeated scanning, whereas no such movement was observed on graphite, indicating strong adhesion of fibrinogen to a hydrophobic surface. Spreading kinetics of fibrinogen on the two surfaces was determined by measuring the heights of the D and E domains over a time period of approximately 2 h. On graphite, the heights of both the D and E domains decreased with time to a lower plateau value of 1.0 nm. On mica, the heights of both the D and E domains showed an increase, rising to an upper plateau value of approximately 2.1 nm. The spreading of the D and E domains on graphite was analyzed using an 'exponential-decay-of-height' model. A spreading rate constant of approximately 4.7 x 10(-4) s(-1) was observed for the whole fibrinogen molecule adsorbed on graphite, corresponding to a free energy of unfolding of approximately 37 kT. Extrapolation of the exponential curve in the model to t = 0 yielded values of 2.3 and 2.2 nm for the heights of the D and the E domains at the time of contact with the hydrophobic graphite substrate, significantly less than their free solution diameters. A two-step spreading model is proposed to explain this observation.  相似文献   

6.
The transport characteristics of the blue copper metalloprotein, azurin, have been characterised by conducting atomic force microscopy (C-AFM) at molecular level. Tunnel junctions have been constructed by sandwiching chemisorbed protein molecules between a conducting AFM tip and a planar conducting substrate. Asymmetric current curves with respect to the polarity of the bias (IV) have been observed. The modulation of IV behaviour with compressional force has been examined and is described by a modified Simmons model within which both tunnel distance (protein dimensions) and tunnel barrier are modulated. The modified Simmons formula, which considered unequal Fermi level shifts on two electrodes as being responsible for the asymmetric IV curves, accurately describes the behaviour observed.  相似文献   

7.
Micropatterns of diaphorase (Dp) were fabricated on glass substrates by the microcontact printing (μCP) method and characterized with atomic force microscopy (AFM) and scanning electrochemical microscopy (SECM). AFM images of the printed samples revealed that the mean height of the Dp patterns was 3–5 nm, indicating the formation of a monolayer pattern. The Dp molecules on the surface organized themselves into two-dimensional arrays. We used two kinds of inking solutions: Dp–phosphate buffer solution (PBS) (pH 7.0) and Dp–PBS (pH 7.0) with glutaraldehyde (GA, 1% v/v) as a cross-linking reagent. Although the AFM imaging showed high-quality Dp monolayer patterns in both cases, SECM measurements indicated that the enzymatic activity of Dp was almost lost when Dp–PBS with GA was used as the inking solution, whereas clear enzymatic activity was found when Dp–PBS was used.  相似文献   

8.
The structure and composition of a phase-separated arachidic acid (C19H39COOH) (AA) and perfluorotetradecanoic acid (C13F27COOH) (PA) Langmuir-Blodgett monolayer film was characterized by several different types of atomic force microscopic measurements. At the liquid-air interface, surface pressure-area isotherms show that mixtures of the two acids follow the additivity rule expected from ideal mixtures. Topographic images of the deposited monolayer indicate that the surfactants are oriented normal to the substrate surface, and that the acids undergo phase separation to form a series of discontinuous, hexagonal domains separated by a continuous domain. A combination of lateral force (friction) imaging and adhesion force measurements show that the discontinuous domains are enriched in AA, whereas the surrounding continuous domain is a mixture of both AA and PA. This was further verified by selective, in situ dissolution of AA by n-hexadecane, followed by high-resolution topographical imaging of the discontinuous domains.  相似文献   

9.
The dynamic nature of contact angles as measured by atomic force microscopy   总被引:2,自引:0,他引:2  
Atomic force microscopy appears to be a useful tool for determining the contact angle for small particles. It is shown in this paper that the contact angle of a spherical polyethylene particle changes with the speed of the AFM piezoelectric translator. Such dynamic behavior of the contact angle and other uncertainties such as the position of the three-phase contact on the particle surface during bubble-particle interaction make it difficult to decide whether or not the AFM single-particle contact angle can be used to describe the hydrophobic state of the particle surface.  相似文献   

10.
Thiolated self-assembled monolayers of carbohydrates may serve as useful polyvalent tools to mimic the organized presentation of such molecules at the cell surface. SAMs presenting the disaccharide maltose as a neoglycoconjugate were produced, and the structure was studied by high resolution atomic force microscopy. The molecules form highly ordered structures on a gold (111) surface, with lattice parameters determined by the linker moiety rather than the headgroup.  相似文献   

11.
We have investigated the growth of octadecylsiloxane (ODS) self-assembled monolayers on mica. Freshly cleaved muscovite mica and octadecyltrichlorosilane (OTS) dissolved in toluene (c = 1.0 mmol/L) have been used as substrate and precursor, respectively. The water content of the adsorption solution was between 14.6 and 16.6 mmol/L. Adsorption experiments were carried out in a temperature range between 5 and 45 degrees C, and the obtained submonolayer ODS films were characterized with atomic force microscopy (AFM). Besides the morphology of the films, also information on the surface coverage has been obtained by quantitative evaluation of the AFM images. Depending on the temperature, evidence for both ordered and disordered expanded ODS phases has been found. The pronounced maximum in surface coverage--in contrast to adsorption on silicon substrates--at a temperature of about 27 degrees C and the different morphology of the submonolayer films as compared to silicon substrates could be explained in terms of a deposition, diffusion, and aggregation (DDA) model.  相似文献   

12.
We report on high-resolution electronic measurements of doped organic thin-film transistors using Kelvin probe force microscopy. Measurements conducted on field effect transistors made of N,NI-diphenyl-N,NI-bis(1-naphthyl)-1,1I-biphenyl-4,4I-diamine p-doped with tetrafluoro-tetracyanoquinodimethane have allowed us to determine the rich structure of the doping-induced density of states. In addition, the doping process changes only slightly the Fermi energy position with respect to the highest occupied molecular orbital level center. The moderate change is explained by two counter-acting effects on the Fermi energy position: the doping-induced additional charge and the broadening of the density of states.  相似文献   

13.
The negative differential resistance (NDR) peak current observed in redox active self-assembled monolayer-based molecular junctions has been attenuated by controlling the composition of the molecular junction. Two approaches studied here include capping the electroactive ferrocenyl groups with beta-cyclodextrin and functionalizing the scanning tunneling microscope tip used to probe the self-assembled monolayer (SAM) with n-alkanethiols of different lengths. These are the first examples of systematic modification of the magnitude of the NDR response in a molecule-based system.  相似文献   

14.
The surface structure of an individual metal-organic framework (MOF) microcrystal grown on a functionalized surface has been successfully investigated for the first time in air and vacuum using high-resolution atomic force microscopy. Moreover, this detailed surface analysis has been utilized to optimize the MOF formation procedure to obtain a defect-free surface structure. Comparison of obtained data with recent microscopic studies performed on the same MOF crystal but grown by a conventional procedure clearly shows a much higher quality of crystals produced by surface oriented growth. Importantly, this method of preparing crystals suitable for microscopic analysis is also much faster (3 days compared to 2 years) and, in contrast to the conventional method, produces material suitable for in situ study. These results thus demonstrate for the first time the possibility of nanoscale investigation/modification of MOF surface structure.  相似文献   

15.
16.
Surface plasmon resonance (SPR) spectroscopy is a useful technique for thermodynamically characterizing peptide-surface interactions; however, its usefulness is limited to the types of surfaces that can readily be formed as thin layers on the nanometer scale on metallic biosensor substrates. Atomic force microscopy (AFM), on the other hand, can be used with any microscopically flat surface, thus making it more versatile for studying peptide-surface interactions. AFM, however, has the drawback of data interpretation due to questions regarding peptide-to-probe-tip density. This problem could be overcome if results from a standardized AFM method could be correlated with SPR results for a similar set of peptide-surface interactions so that AFM studies using the standardized method could be extended to characterize peptide-surface interactions for surfaces that are not amenable for characterization by SPR. In this article, we present the development and application of an AFM method to measure adsorption forces for host-guest peptides sequence on surfaces consisting of alkanethiol self-assembled monolayers (SAMs) with different functionality. The results from these studies show that a linear correlation exists between these data and the adsorption free energy (ΔG(o)(ads)) values associated with a similar set of peptide-surface systems available from SPR measurements. These methods will be extremely useful to characterize thermodynamically the adsorption behavior for peptides on a much broader range of surfaces than can be used with SPR to provide information related to understanding protein adsorption behavior to these surfaces and to provide an experimental database that can be used for the evaluation, modification, and validation of force field parameters that are needed to represent protein adsorption behavior accurately for molecular simulations.  相似文献   

17.
A study of the degradation effects of enzyme treatment on the dimensional changes of cellulose aggregate fibrils (CAFs) with dimensions of ∼100,000 × 3,000 × 300 nm from fully bleached kraft fiber was performed. CAFs were incubated with cellulase for up to 32 h. The insoluble CAFs fragments remaining after enzymatic hydrolysis were then subjected to variable relative humidity (RH). Each sample was imaged by an atomic force microscope (AFM) in tapping mode. The images were analyzed to determine the dimensional changes of the insoluble CAFs. Enzymatic hydrolysis continuously depolymerized the CAFs over 32 h, ultimately causing 20% of the CAFs to become soluble. Compared to initial dimensions of the reference CAFs with no enzymatic treatment, the dimensions of the enzyme treated CAFs were generally more responsive to humidity and exhibited an increased frequency of plastic deformations.  相似文献   

18.
Lateral segregation of lipids and proteins in biological membranes leads to the formation of detergent-resistant domains, also called "rafts". Understanding the mechanisms governing the biomembrane's resistance to solubilization by detergents is crucial in biochemical research. Here, we used real-time atomic force microscopy (AFM) imaging to visualize the behavior of a model supported lipid bilayer in the presence of different Triton X-100 (TX-100) concentrations. Mixed dioleoylphosphatidylcholine/dipalmitoylphosphatidylcholine (DOPC/DPPC) supported bilayers were prepared by vesicle fusion. Real-time AFM imaging revealed that, at concentrations below the critical micelle concentration (CMC), TX-100 did not solubilize the bilayer, but the DPPC domains were eroded in a time-dependent manner. This effect was attributed to the DPPC molecular packing disorganization by the detergent starting from the DOPC/DPPC interface. Just above the CMC, the detergent led to a complete solubilization of the DOPC matrix, leaving the DPPC domains unaltered. At higher TX-100 concentrations, the DOPC was also immediately removed just after detergent addition, and the DPPC domains remaining on the mica surface appeared to be more swollen and were gradually solubilized. This progressive solubilization of the DPPC remaining phase did not start at the edge of the domains but from holes appearing and expanding at the center of DPPC patches. The swelling of the DPPC domains was directly correlated with TX-100 concentration above the CMC and with detergent intercalation between DPPC molecules. We are convinced that this approach will provide a key system to elucidate the physical mechanisms of membrane solubilization by nonionic detergents.  相似文献   

19.
Here we report a new study on the boundary conditions for the flow of a simple liquid in a confined geometry obtained by measuring hydrodynamic drainage forces with colloid probe atomic force microscopy (AFM). In this work, we provide experimental data obtained using a best practice experimental protocol and fitted with a new theoretical calculation (Zhu, L.; Attard, P.; Neto, C. Langmuir 2010, submitted for publication, preceding paper). We investigated the hydrodynamic forces acting on a silica colloid probe approaching a hydrophobized silicon surface in a single-component viscous Newtonian liquid (di-n-octylphthalate), a partially wetting system. The measured average slip lengths were in the range of 24-31 nm at approach velocities of between 10 and 80 μm/s. Using our experimental approach, the presence of nanoparticle contaminants in the system can be indentified, which is important because it has been shown that nanoparticles lead to a large apparent slip length. Under our stringent control of experimental conditions, the measurement of the slip length is reproducible and independent of the spring constant of the cantilever.  相似文献   

20.
The dependence of the properties of so-called "surface nanobubbles" at the interface of binary self-assembled monolayers (SAMs) of octadecanethiol (ODT) and 16-mercaptohexadecanoic acid (MHDA) on ultraflat template-stripped gold and water on the surface composition was studied systematically by in situ atomic force microscopy (AFM). The macroscopic water contact angle (θ(macro)) of the SAMs spanned the range between 107° ± 1° and 15° ± 3°. Surface nanobubbles were observed on all SAMs by intermittent contact-mode AFM; their size and contact angle were found to depend on the composition of the SAM. In particular, nanoscopic contact angles θ(nano) < 86° were observed for the first time for hydrophilic surfaces. From fits of the top of the bubble profile to a spherical cap in three dimensions, quantitative estimates of nanobubble height, width, and radius of curvature were obtained. Values of θ(nano) calculated from these data were found to change from 167° ± 3° to 33° ± 58°, when θ(macro) decreased from 107° ± 1° to 37° ± 3°. While the values for θ(nano) significantly exceeded those of θ(macro) for hydrophobic SAMs, which is fully in line with previous reports, this discrepancy became less pronounced and finally vanished for more hydrophilic surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号