首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An adaptive control approach is proposed for trajectory tracking of wheeled mobile robot (WMR) with unknown longitudinal and lateral slipping. A kinematic model of tracked WMR is established in this paper, in which both longitudinal and lateral slipping are considered and processed as three time-varying parameters. Sliding mode observer is then introduced to real time estimate the slip parameters online. A stable tracking control law for this robot system is proposed by backstepping method, and the asymptotic stability is guaranteed by Lyapunov theory. Meanwhile, the controller gains are determined online by poles placement method. Simulation results show the effectiveness and robustness of the proposed method.  相似文献   

2.
Trajectory tracking of a mobile manipulator is a challenging research because of its complex nonlinearity and dynamics. This paper presents an adaptive control strategy for trajectory tracking of a mobile manipulator system that consists of a wheeled platform and a modular manipulator. When a robot system moves in the presence of sliding, it is difficult to accurately track its trajectory by applying the backstepping approach, even if we employ a non-ideal kinematic model. To address this problem, we propose using a combination of adaptive fuzzy control and backstepping approach based on a dynamic model. The proposed control scheme considers the dynamic interaction between the platform and manipulator. To accurately track the trajectory, we propose a fuzzy compensator in order to compensate for modeling uncertainties such as friction and external disturbances. Moreover, to reduce approximation errors and ensure system stability, we include a robust term to the adaptive control law. Simulation results obtained by comparing several cases reveal the presence of the dynamic interaction and confirm the robustness of the designed controller. Finally, we demonstrate the effectiveness and merits of the proposed control strategy to counteract the modeling uncertainties and accurately track the trajectory.  相似文献   

3.
This paper presents a novel implementation of an adaptive robust second-order sliding mode control (ARSSMC) on a mobile robot with four Mecanum wheels. Each wheel of the mobile robot is actuated by separate motors. It is the first time that higher-order sliding mode control method is implemented for the trajectory tracking control of Mecanum-wheeled mobile robot. Kinematic and dynamic modeling of the robot is done to derive an equation of motion in the presence of friction, external force disturbance, and uncertainties. In order to make the system robust, second-order sliding mode control law is derived. Further, adaptive laws are defined for adaptive estimation of switching gains. To check the tracking performance of the proposed controller, simulations are performed and comparisons of the obtained results are made with adaptive robust sliding mode control (ARSMC) and PID controller. In addition, a new and low-cost experimental approach is proposed to implement the proposed control law on a real robot. Experimental results prove that without compromising on the dynamics of the robot real-time implementation is possible in less computational time. The simulation and experimental results obtained confirms the superiority of ARSSMC over ARSMC and PID controller in terms of integral square error (ISE), integral absolute error (IAE), and integral time-weighted absolute error (ITAE), control energy and total variance (TV).  相似文献   

4.
Wang  Conghua  Ji  Jinchen  Miao  Zhonghua  Zhou  Jin 《Nonlinear dynamics》2021,105(1):315-330

This paper addresses the problem of synchronization control for networked multi-mobile robot systems from the perspective of analytical mechanics. By reformulating the task requirement as a constrained motion problem, a unified synchronization algorithm for networked multi-mobile robot systems with or without leaders is proposed in combination with algebraic graph theory and the Udwadia–Kalaba approach. With the proposed algorithm, the networked mobile robot system can achieve synchronization from arbitrary initial conditions for the leaderless case and realize accurate trajectory tracking with explicitly given reference trajectories for the leader-following case. Numerical simulations of a networked wheeled mobile robot system are performed under different network structures and various trajectory requirements to show the performance of the proposed control algorithm.

  相似文献   

5.
This paper proposes a novel approach for bilateral teleoperation systems with a multi degrees-of-freedom (DOF) nonlinear robotic system on the master and slave side with constant time delay in a communication channel. We extend the passivity based architecture to improve position and force tracking and consequently transparency in the face of offset in initial conditions, environmental contacts and unknown parameters such as friction coefficients. The proposed controller employs a stable neural network on each side to approximate unknown nonlinear functions in the robot dynamics, thereby overcoming some limitations of conventional controllers such as PD or adaptive controllers and guaranteeing good tracking performance. Moreover, we show that this new neural network controller preserves the control passivity of the system. Simulation results show that NN controller tracking performance is superior to that of conventional controllers.  相似文献   

6.
戈新生 《力学季刊》1999,20(2):173-177
本文讨论轮式动机器人非完整运动的最优规划问题,利用约束与最优控制理论建立数学模型,考虑系统的非完整约束特性,提出轮式移动机器人运动规划的最优控制算法。通过数值仿真,表明该方法的有效性。  相似文献   

7.
Zhu  Chengzhi  Jiang  Yiming  Yang  Chenguang 《Nonlinear dynamics》2022,109(2):849-861
Nonlinear Dynamics - In this paper, an adaptive NN (neural network) control scheme is proposed for uncertain robot systems to achieve fixed-time convergence. With the proposed fixed-time NN...  相似文献   

8.
Decentralized control is the most favorite control of robot manipulators due to computational simplicity and ease of implementation. Beside that, adaptive fuzzy control efficiently controls uncertain nonlinear systems. These motivate us to design a decentralized fuzzy controller. However, there are some challenging problems to guarantee stability. The state-space model of the robotic system including the robot manipulator and motors is in a noncompanion form, multivariable, highly nonlinear, and heavily coupled with a variable input gain matrix. For this purpose, adaptive fuzzy control may use all variable states. As a result, it suffers from computational burden. To overcome the problems, we present a novel decentralized Direct Adaptive Fuzzy Control (DAFC) of electrically driven robot manipulators using the voltage control strategy. The proposed DAFC is simple, in a decentralized structure with high-accuracy response, robust tracking performance, and guaranteed stability. Instead of all state variables, only the tracking error of every joint and its derivative are given as the inputs of the controller. The proposed DAFC is simulated on a SCARA robot driven by permanent magnet dc motors. Simulation results verify superiority of the decentralized DAFC to a decentralized PD-fuzzy controller.  相似文献   

9.
This paper presents a novel discrete adaptive fuzzy controller for electrically driven robot manipulators. It addresses how to overcome the nonlinearity, uncertainties, discretizing error and approximation error of the fuzzy system for asymptotic tracking control of robotic manipulators. The proposed controller is model-free in the form of discrete Mamdani fuzzy controller. The parameters of fuzzy controller are adaptively tuned using an adaptive mechanism derived by stability analysis. A robust control term is used to compensate the approximation error of the fuzzy system for asymptotic tracking of a desired trajectory. The controller is robust against all uncertainties associated with the robot manipulator and actuators. It is easy to implement since it requires only the joint position feedback. Compared with fuzzy controllers which employ all states to guarantee stability, the proposed controller is very simpler. Stability analysis and simulation results show its efficiency in the tracking control.  相似文献   

10.
A low-complexity design problem of tracking scheme for uncertain nonholonomic mobile robots is investigated in the presence of unknown time-varying input delay. It is assumed that nonlinearities and parameters of robots and their bounds are unknown. Based on a nonlinear error transformation, a tracking control scheme ensuring preassigned bounds of overshoot, convergence rate, and steady-state values of a tracking error is firstly presented in the absence of input delay, without using any adaptive and function approximation mechanism to estimate unknown nonlinearities and model parameters and computing repeated time derivatives of certain signals. Then, we develop a low-complexity tracking scheme to deal with unknown time-varying input delay of mobile robots where some auxiliary signals and design conditions are derived for the design and stability analysis of the proposed tracking scheme. The boundedness of all signals in the closed-loop system and the guarantee of tracking performance with preassigned bounds are established through Lyapunov stability analysis. The validity of the proposed theoretical result is shown by a simulation example.  相似文献   

11.
Nonlinear control of electrical flexible-joint robots   总被引:1,自引:0,他引:1  
This paper is devoted to the nonlinear tracking control of electrically driven flexible-joint manipulators using the voltage control strategy. Despite the torque control laws that are involved in the complexity of manipulator dynamics, the proposed control law is free from manipulator dynamics. This novelty is for adopting the voltage control strategy to derive a simple robust adaptive control under both structured and unstructured uncertainty. The proposed control approach has a fast response with a good tracking performance under the well-behaved control efforts in the form of decentralized control. The control method is justified by the stability analysis and simulated on a flexible-joint electrically driven robot manipulator.  相似文献   

12.
An immense body of research has focused on path-planning and following of wheeled robots in unstructured surfaces. Nonholonomic robots traveling over deformable terrains together with complex operating conditions, however, pose further challenges in terms of a higher demand for robustness and optimality. In this paper, a Chaos-enhanced Accelerated Particle Swarm Optimization (CAPSO) algorithm is employed for planning an optimal path of a wheeled robot, so as to ensure shortest path from the starting point to the target location together with safety through guaranteed avoidance of collisions with static and dynamic obstacles. The fundamental terramechanics concepts are employed to derive essential forces and moments acting on the wheeled robot. Subsequently, a kineto-dynamic model of the robot is developed for designing a novel robust control algorithm based on an exponential-integral-sliding mode (EISMC) scheme and a RBF-NN approximator. The results revealed that the proposed algorithm is responsive and robust to withstand adverse effects of structured and unstructured uncertainties by using the designed adaptation law according to the Lyapunov stability theorem. The effectiveness of the proposed algorithm is also validated against several reported frameworks.  相似文献   

13.
We propose a flexible stochastic scheme for point-to-point trajectory planning of nonholonomic wheeled mobile manipulators subjected to move in a structured workspace. The problem is known to be complex, particularly if obstacles are present and if dynamic stability constraint is considered. The proposed method consists of extending to wheeled mobile manipulators the random-profile approach recently applied to wheeled platforms. This versatile method handles constraints on: (i) geometry (obstacle avoidance, bounded joint positions and path curvature); (ii) kinematics (bounded velocities and accelerations); (iii) dynamics (bounded torques, stability condition). It may be applied using various forms of cost functions involving travel time, efforts and power. Solutions are presented for planar and spatial nonholonomic wheeled mobile manipulators undertaking, in a constrained workspace, a point-to-point task defined either in generalized or operational coordinates.  相似文献   

14.
This paper addresses the stabilizing control problem for nonlinear systems subject to unknown actuator saturation by using adaptive dynamic programming algorithm. The control strategy is composed of an online nominal optimal control and a neural network (NN)-based feed-forward saturation compensator. For nominal systems without actuator saturation, a critic NN is established to deal with the Hamilton–Jacobi–Bellman equation. Thus, the online approximate nominal optimal control policy can be obtained without action NN. Then, the unknown actuator saturation, which is considered as saturation nonlinearity by simple transformation, is compensated by employing a NN-based feed-forward control loop. The stability of the closed-loop nonlinear system is analyzed to be ultimately uniformly bounded via Lyapunov’s direct method. Finally, the effectiveness of the presented control method is demonstrated by two simulation examples.  相似文献   

15.
This paper proposes an active disturbance rejection adaptive controller for tracking control of a class of uncertain nonlinear systems with consideration of both parametric uncertainties and uncertain nonlinearities by effectively integrating adaptive control with extended state observer via backstepping method. Parametric uncertainties are handled by the synthesized adaptive law and the remaining uncertainties are estimated by extended state observer and then compensated in a feedforward way. Moreover, both matched uncertainties and unmatched uncertainties can be estimated by constructing an extended state observer for each channel of the considered nonlinear plant. Since parametric uncertainties can be reduced by parameter adaptation, the learning burden of extended state observer is much reduced. Consequently, high-gain feedback is avoided and improved tracking performance can be expected. The proposed controller theoretically guarantees a prescribed transient tracking performance and final tracking accuracy in general while achieving asymptotic tracking when the uncertain nonlinearities are not time-variant. The motion control of a motor-driven robot manipulator is investigated as an application example with some suitable modifications and improvements, and comparative simulation results are obtained to verify the high tracking performance nature of the proposed control strategy.  相似文献   

16.
针对空间连续型机器人系统三臂节执行器并发故障的问题,提出一种自适应鲁棒容错控制算法.采用非奇异快速终端滑模控制器,并通过自适应RBF(Radial Basis Function)神经网络在线调整控制器的切换项增益,使控制器在模型参数摄动和外部干扰下依旧具有较高的跟踪精度和较强的鲁棒性.基于Lyapunov稳定性理论,证...  相似文献   

17.
Because the nonlinear uncertainty of the continuously variable transmission system operated by the synchronous reluctance motor is unknown, control performance obtained for classical linear controller is poor, with comparison to more complex, nonlinear control methods. Due to good learning skill online, a blend amended recurrent Gegenbauer-functional-expansions neural network (NN) control system was developed to return to the nonlinear uncertainties behavior. The blend amended recurrent Gegenbauer-functional-expansions NN control system can fulfill overseer control, amended recurrent Gegenbauer-functional-expansions NN control with an adaptive dharma and recompensed control with a reckoned dharma. In addition, according to the Lyapunov stability theorem, the adaptive dharma in the amended recurrent Gegenbauer-functional-expansions NN and the reckoned dharma of the recompensed controller are established. Furthermore, an altered artificial bee colony optimization yields two varied learning rates for two parameters to find two optimal values, which helped improving convergence. Finally, various comparisons of the experimental results are demonstrated to confirm that the proposed control system can result better control performance.  相似文献   

18.
In this paper, a novel decentralized adaptive neural control scheme is proposed for a class of uncertain multi-input and multi-output (MIMO) nonlinear time-delay systems. RBF neural networks (NNs) are used to tackle unknown nonlinear functions, then the decentralized adaptive NN tracking controller is constructed by combining Lyapunov–Krasovskii functions and the dynamic surface control (DSC) technique along with the minimal-learning-parameters (MLP) algorithm. The proposed controller guarantees semi-global uniform ultimate boundedness (SGUUB) of all the signals in the closed-loop large-scale system, while the tracking errors converge to a small neighborhood of the origin. An advantage of the proposed control scheme lies in that the number of adaptive parameters for each subsystem is reduced to one, and three problems of “computational explosion,” “dimension curse” and “controller singularity” are solved, respectively. Finally, a numerical simulation is presented to demonstrate the effectiveness and performance of the proposed scheme.  相似文献   

19.

Robust tracking control of electrically flexible-joint robots is addressed in this paper. Two important practical situations are considered. The fact that robot actuators have limited voltage and that current measurement is subjected to noise. Let us notice that a few solutions for the voltage-bounded robust tracking control have been proposed. In this paper, we contribute to this subject by presenting a new form of voltage-based control strategy. It proves that the closed loop system is BIBO stable, while actuator/link position errors are uniformly–ultimately bounded stable in agreement with Lyapunov’s direct method in any finite region of the state space. As a second contribution of this paper, we present a robust adaptive control scheme without the need for computation of regressor matrix and current measurement, with the same result on the closed loop system stability. This novelty gives a simple robust tracking control scheme for both structured and unstructured uncertainties based on the function approximation technique. The analytical studies as well as experimental results produced using MATLAB/Simulink external mode control on a flexible-joint electrically driven robot demonstrate high performance of the proposed control scheme.

  相似文献   

20.
This paper presents a novel robust decentralized control of electrically driven robot manipulators by adaptive fuzzy estimation and compensation of uncertainty. The proposed control employs voltage control strategy, which is simpler and more efficient than the conventional strategy, the so-called torque control strategy, due to being free from manipulator dynamics. It is verified that the proposed adaptive fuzzy system can model the uncertainty as a nonlinear function of the joint position error and its time derivative. The adaptive fuzzy system has an advantage that does not employ all system states to estimate the uncertainty. The stability analysis, performance evaluation, and simulation results are presented to verify the effectiveness of the method. A?comparison between the proposed Nonlinear Adaptive Fuzzy Control (NAFC) and a Robust Nonlinear Control (RNC) is presented. Both control approaches are robust with a very good tracking performance. The NAFC is superior to the RNC in the face of smooth uncertainty. In contrast, the RNC is superior to the NAFC in the face of sudden changes in uncertainty. The case study is an articulated manipulator driven by permanent magnet dc motors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号