首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
3 radical in the plume of an arcjet plasma during diamond film chemical vapor deposition. C3, identified using laser-induced fluorescence, is distributed in a shell surrounding the diamond-depositing core of the arcjet plasma plume. Received: 13 June 1996/Revised version: 5 September 1996  相似文献   

2.
3.
We are investigating the thermodynamic conditions under which condensation occurs in laser ablated copper plasma plumes. The plasma is created by XeCl excimer laser ablation (308 nm, 300 mJ/pulse) at power densities from 500–1000 MW/cm2 into backing pressures of helium in the range 0–50 torr. We use laser-induced fluorescence (LIF) to probe velocity and relative density of both atomic copper and the copper dimer molecule, Cu2, which is formed during condensation onset. At low pressure (10 mtorr), the atomic Cu velocity peaks at approximately 2×106 cm/s. Copper dimer time-of-flight data suggest that condensation onset occurs after the Cu atoms have slowed very significantly. Excitation scans of the Cu2A-X (0,0) and (1,1) bands yield a rotational and vibrational temperature in the neighborhood of 300 K for all conditions studied. Such low temperatures support the theory that Cu2 is formed under thermally and translationally cold conditions. Direct laser beam absorption is used to determine the number density of atomic copper. Typical densities attained with 5 torr of helium backing gas are 6–8×1013 cm–3. Rayleigh scattering from particulate is easily observable under conditions favorable to particulate production.  相似文献   

4.
Expressions are developed for the momentum flux density in collimated and expanding cathode-spot plasma jets by multiplying the ion flux density by the momentum carried by individual ions. Cathode spots placed in gas background produce a hemispherical metal-vapor plasma region whose radius can be predicted by equating the plasma-jet momentum flux density with the background gas pressure. In hot anode vacuum arcs and in anode-spot vacuum arcs a vapor plume from the anode expands into the cathodic plasma. Significant expansion occurs when the anodic vapor pressure becomes comparable to the cathodic momentum flux density  相似文献   

5.
The dynamics of the expansion of the plasma plume induced by laser ablation of a copper target at a fluence of 17 J/cm2 was investigated theoretically by means of a Monte Carlo simulation. When the expansion occurs under a relatively high pressure, the ambient gas particles may be involved in the collective motion of the plume. The simulation allows the study of the simultaneous collective motion of different species, such as the laser-ablated and the ambient gas particles. The influence of the background gas nature and pressure on the laser-induced plasma plume expansion behavior was studied. The expansion dynamics were found to be different in the case of the expansion in ambient gases of different molecular weight. The dynamics of the plume expansion under an argon pressure of 200 Pa seem to be strongly related to the equilibration of the pressure gradients in the gas phase, and evidence of the oscillatory behavior of the plume expansion was shown from the evolution over time of the pressure profiles in the plume. This behavior has also been observed in similar conditions for a krypton atmosphere, but for a lower pressure than for argon. The vortical flow formation at the plume periphery, involving both the laser-ablated and the argon particles at moderate pressure, was also predicted from the Monte Carlo simulation.  相似文献   

6.
The structure and evolution of the laser-induced vapor plume and shockwave were measured from femtosecond time resolved shadowgraph images. By changing the wavelength of the probe beam (400 and 800 nm), differences in the opacity of the vapor plume were measured as a function of delay time from the ablation laser pulse. The evolution of the temperature and electron number density during and after the ablation laser pulse were determined and compared for ablation in argon and helium background gases. A laser supported detonation wave (LSD) observed for ablation in argon, blocks the incoming laser energy and generates a high-pressure region above the vapor plume.  相似文献   

7.
激光诱导Al等离子体在背景气体中的流体现象   总被引:3,自引:2,他引:1  
调Q-YAG脉冲激光(波长1.06μm,脉宽10ns,能量为250mJ/pu1se)烧蚀Al靶,用短焦距照相系统和光学多道分析仪(OMA)记录了等离子体在氩气背景气体及不同压强下所呈现的流体现象及其等离子体辐射的空间分辨光谱。实验发现,当背景气压为400Pa以下时,在靶面上存在一个明亮的发光球体,球体直径远大于激光烧蚀斑的大小,此球体向四周辐射等离子体光谱,只是在垂直靶面的方向辐射相对较强。在气压约为400Pa,等离子体辐射才以较为明显的羽状体形态向前喷散,且随气压增高,喷散的立体角变小。随着背景气压的继续升高,等离子体羽被压缩,成为一个明亮的发光小羽状体,当气压达20~30kPa,发光羽状体开始出现分解的迹象,在羽状体前端形成一个光球。气压继续升高,等离子体羽完全变成一串发光球。离开靶面越远,发光球的半径越大。用光学多道分析系统分析这些发光球的光谱特征,发现在靶面附近主要是Al等离子体的谱线,而较远的发光球,其主要谱线则来自背景气体。在气压为20kPa左右,等离子休羽呈现烧蚀点为明亮的白色亮点,而羽端为鲜艳绿色(氩的514nm)的彩色羽。  相似文献   

8.
万瓦级光纤激光焊接过程中小孔内外等离子体研究   总被引:3,自引:0,他引:3       下载免费PDF全文
李时春  陈根余  周聪  陈晓锋  周宇 《物理学报》2014,63(10):104212-104212
为了进一步深入了解超高功率光纤激光深熔焊接过程中等离子体特征,试验拍摄了深熔小孔内外等离子体形态,并采用光谱仪检测分析了光纤激光致等离子体光谱信号.利用检测得到的等离子体光谱信号,计算研究了等离子体的电子温度、电子密度、电离度以及等离子体压力特征,并分析了在小孔内不同深度处及孔外等离子体的变化规律.结果表明,孔内等离子体呈现不均匀分布特征,孔外金属蒸气远多于等离子体.等离子体光谱分析显示,光纤激光致等离子体辐射出的谱线较少,即电离程度较低.进一步的计算结果同样证实了光纤激光致等离子体处于弱电离状态,但等离子体电子密度仍然处于较高水平,且等离子体瞬态压力可达到数百个大气压.  相似文献   

9.
林芷伊  简俊涛  王小华  杭纬 《物理学报》2018,67(18):185201-185201
为了了解等离子体中原子与离子组分的膨胀特性及背景气体存在状态下其运动状态的改变规律,设计了一系列实验,并进行了深入探究.采用波长为532 nm的纳秒激光剥蚀铝样品形成等离子体,并使用配有em ICCD检测器的C-T型三光栅单色仪对等离子体进行时序采集,同时使用2400 g·mm~(-1)的光栅替代窄带滤光片进行不同组分成像诊断,得到铝等离子体中Al Ⅰ (396.1 nm), Al Ⅱ (466.3 nm), Al Ⅲ (447.9 nm)的光谱分辨图像.在不同背景气压下采集了等离子体各组分光谱图像,探究背景气体对等离子体演化的影响.结果表明,在等离子体形成过程中,离子组分相对于原子组分分布在羽流前端,且角度分布较小.原子与离子组分的真空膨胀速度均处于10~4m·s~(-1)量级.等离子体中离子组分的运动速度较高,且其运动速度随着离子价态的增加而增大,但在本实验使用的能量密度范围下,随激光能量的变化波动不大.中性原子的运动速度较慢,但随能量的增加而增大.随着膨胀过程的进行,各组分羽流沿样品表面法线方向推进且发射强度逐渐降低,对应的羽流密度和温度也相应降低.环境气压逐渐增大时,各研究组分运动状态与在高真空度下时有明显区别.在气压大于1 Pa后,等离子体与环境气体发生相互渗透,膨胀前端出现的晕影,产生扰动,发生束缚缓速.且等离子羽因气压增大而收缩、与背景气体的碰撞概率增加,使得羽流发射强度加强,等离子体的寿命随之延长.提出的新颖诊断方法与实验所得结果可为等离子体组分动力学过程的研究提供参考.  相似文献   

10.
The densities of iron, tungsten, copper, and nickel vapors produced by pseudosparks in a switch-like configuration are measured by laser-induced fluorescence. The cathode is made of a composite material essentially consisting of tungsten, but also containing the other metals mentioned. Total vapor densities are calculated from ground state densities using the excitation temperature of iron, which decays from 1900 K at 9 μs after initiation of the discharge to 600 K about 150 μs later. With maximum copper and tungsten vapor densities of 1.5×1018 m-3 and 2×1017 m -3, respectively, the composition of metal vapor differs considerably from that of the cathode material. Iron and nickel vapors are present with densities in the range of 1016 m-3. By comparison of vapor density ratios with vapor pressure ratios it is found that regions with temperatures in excess of 5000 K exist on the cathode. These are attributable to emission sites providing the electrons for current conduction. The vapor densities are roughly proportional to the current amplitude, while the gas pressure has practically no influence between 15 and 30 Pa  相似文献   

11.
激光感生等离子体特性的三维数值模拟   总被引:1,自引:0,他引:1  
在激光焊接过程中,作用于金属工件表面的高强度激光会引起材料的强烈蒸发,金属蒸汽与入射激光相互怍用,又会引起金属蒸汽部分电离,形成激光感生等离子体。本文采用三维模拟方法,考虑保护气和侧吹气的影响,对激光感生等离子体中的温度与速度分布进行了研究。  相似文献   

12.
Experimental data on the erosion rates of a copper cathode in He, Ar, and SF6 from 10-6 to 760 torr are presented. The work performed by the cathodic-erosion plasma expanding against the gas is found experimentally to be constant, the volume of the expanding plasma cloud being linked to the gas pressure by the relation R3p = constant. These data agree with a redeposition model based on condensation of the metallic vapor produced by the arc on the cathode surface. The redeposited mass on the cathode is found to be proportional to the cube root of the gas mass density.  相似文献   

13.
We described the influence of a type of gas and its pressure upon the size distribution of Si nanoparticles fabricated by laser ablation in an ambient gas and the plume dynamics during the synthesis. The plume dynamics was investigated by laser-induced fluorescence and ultraviolet Rayleigh scattering. Based on the results, the importance of the gas flow within the ablation plume in the formation of the nanoparticles is understood.  相似文献   

14.
When the output from a high power Nd:YAG laser irradiates a metallic surface, metal vapor is generated and changes into the plasma state, which is called a laser-induced plasma plume. If the high power laser is combined with an arc plasma, they mutually attract and influence each other. In this study, several analytic steps are introduced to analyze the laser-arc hybrid welding plasma. A conduction equation is first solved to obtain the temperature distribution on the metallic surface. Next, an analysis of the metal vapor is conducted to investigate the Ar–Fe mixture using a numerical method. As a result of the analysis, it is revealed that the plasma is concentrated in the vicinity of the laser-irradiation position and that the local temperature of the plasma is increased. Plasma flow and current density profiles are also affected by the laser irradiation.  相似文献   

15.
High-speed holographic interferometry was applied to the experimental study of a laser-induced plasma plume in pulsed laser welding. We adopted two kinds of holographic interferometers for visualizing and imaging the refractive index distribution of the plume and vaporized metal; a real-time holographic interferometer with a high-speed camera and a double-pulsed holographic interferometer with a dual-reference-beam module. The high-speed photographs of the weld plume were compared with the visualized images by holographic interferometer. The experimental results show the process of generation and propagation of the laser-induced plume and give the feasibility of quantitative measurement of the density distribution of the laser-induced plume and vaporized metal in laser welding.  相似文献   

16.
In this paper, a pulsed-dc CH_3OH/Ar plasma jet generated at atmospheric pressure is studied by laser-induced fluorescence(LIF) and optical emission spectroscopy(OES). A gas–liquid bubbler system is proposed to introduce the methanol vapor into the argon gas, and the CH3OH/Ar volume ratio is kept constant at about 0.1%. Discharge occurs in a 6-mm needle-to-ring gap in an atmospheric-pressure CH_3OH/Ar mixture. The space-resolved distributions of OH LIF inside and outside the nozzle exhibit distinctly different behaviors. And, different production mechanisms of OH radicals in the needle-to-ring discharge gap and afterglow of plasma jet are discussed. Besides, the optical emission lines of carbonaceous species, such as CH, CN, and C_2 radicals, are identified in the CH_3OH/Ar plasma jet. Finally, the influences of operating parameters(applied voltage magnitude, pulse frequency, pulsewidth) on the OH radical density are also presented and analyzed.  相似文献   

17.
A photo-ionized lithium source is developed for plasma acceleration applications. A homogeneous column of lithium neutral vapor with a density of 2×1015-3 is confined by helium gas in a heat-pipe oven. A UV laser pulse ionizes the vapor. In this device, the length of the neutral vapor and plasma column is 25 cm. The plasma density was measured by laser interferometry in the visible on the lithium neutrals and by CO2 laser interferometry on the plasma electrons. The maximum measured plasma density was 2.9×10 14 cm-3, limited by the available UV fluence (≈83 mJ/cm2), corresponding to a 15% ionization fraction. After ionization, the plasma density decreases by a factor of two in about 12 μs. These results show that such a plasma source is scaleable to lengths of the order of 1 m and should satisfy all the requirements for demonstrating the acceleration of electrons by 1 GeV in a 1-GeV/m amplitude plasma wake  相似文献   

18.
Radiative effects of the laser-induced ablative plasma on the heating and ablation dynamics of materials irradiated by nanosecond laser pulses are studied by the example of graphite ablation. On the basis of combined thermal and gas dynamic modeling, the laser-induced plasma plume is shown to be a controlling factor responsible for ultradeep laser drilling due to plasma radiation, both bremsstrahlung and recombinative. We demonstrate that plasma radiative heating of the target considerably deepens the molten layer, thus explaining the observed crater depths.  相似文献   

19.
Quantitative analysis of laser-induced exciplex fluorescence (LIEF) requires knowledge of the spectral characteristics of all the involved substances. The temperature dependence of the ratio of exciplex and monomer in the liquid phase as well as the temperature-dependent fluorescence intensity from monomers in the gas phase must be known when quantifying signals and correcting for cross talk between liquid and vapor phase. In this work we present an extensive characterization of the fluorescence of the fluorobenzene/diethyl-methyl-amine (DEMA)/n-hexane exciplex system. We use a mixture of 2% fluorobenzene, 9% DEMA, and 89% n-hexane, which was tested before for its coevaporative behavior. The temperature dependent fluorescence of the liquid exciplex was studied in a thin layer cell with UV-light (266 nm) excitation. Cross talk of a known combination of bandpass filters was quantified for the relevant temperature range. The temperature dependence of the gas-phase absorption and fluorescence signal (fluorobenzene) was studied in a heated static cell and a heated gas stream in a nitrogen coflow, respectively. These measurements provide the background for the application of LIEF for quantitative analysis of vapor and liquid distributions in fuel sprays.  相似文献   

20.
均质凝结中蒸汽的极限过冷度   总被引:1,自引:0,他引:1  
本文应用统计热力学巨正则系综的密度涨落理论;提出了确定均质凝结中蒸汽极限过冷度的方法,得出了蒸汽凝结机制较沸腾机制复杂得多的结论,并推测出动力学影响是蒸汽凝结不可忽略的重要因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号