首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fabrication of large-scale ZnO ordered pore arrays by the potentiostatic electrochemical deposition method based on a two-dimensional ordered colloidal monolayer template is reported. The pore morphology evolves from hemispherical to a well-like structure by controlling the deposition potential.  相似文献   

2.
Stable superhydrophobic platinum surfaces have been effectively fabricated on the zinc substrates through one-step replacement deposition process without further modification or any other post-treatment procedures. The fabrication process was controllable, which could be testified by various morphologies and hydrophobic properties of different prepared samples. By conducting SEM and water CA analysis, the effects of reaction conditions on the surface morphology and hydrophobicity of the resulting surfaces were carefully studied. The results show that the optimum condition of superhydrophobic surface fabrication depends largely on the positioning of zinc plate and the concentrations of reactants. When the zinc plate was placed vertically and the concentration of PtCl(4) solution was 5 mmol/L, the zinc substrate would be covered by a novel and interesting composite structure. The structure was composed by microscale hexagonal cavities, densely packed nanoparticles layer and top micro- and nanoscale flower-like structures, which exhibit great surface roughness and porosity contributing to the superhydrophobicity. The maximal CA value of about 171° was obtained under the same reaction condition. The XRD, XPS and EDX results indicate that crystallite pure platinum nanoparticles were aggregated on the zinc substrates in accordance with a free deposition way.  相似文献   

3.
In this paper, current progress in the area of photoresponsive surfaces with controllable wettability is reviewed, including mainly surface conversion between wetting and anti-wetting, prepared from inorganic oxides (e.g., titanium dioxide, zinc oxide, and tungsten oxide) or/and photoactive organic molecules (e.g., azobenzene, and spiropyran), and movement of liquid droplets driven by molecular machines (e.g., molecular shuttles such as rotaxanes). Photoresponsive controllable wettability originates from a transition between the bistable states of photoresponsive materials. The exploration of the basic mechanisms provides a basis for the construction of novel smart responsive surfaces.  相似文献   

4.
The study of the interfacial characteristics of biodegradable polymers/copolymers is of importance from the point of view of both surface science and pharmaceutical/cosmetic applications. Films formed from biodegradable polymers allow systematic wettability studies on surfaces with a wide range of copolymer (chemical) compositions. The possibility of interchanging these drug carrier polymers, if their wetting characteristics are similar, could be beneficial to diverse applications. Low-rate dynamic contact angles on films (solvent cast on polar substrates, i.e. on silicon wafer) of poly(lactic acid), and its copolymers with poly(glycolic acid), (with four different copolymer ratios of 85/15, 75/25, 65/35 and 50/50) were measured by axisymmetric drop shape analysis-profile (ADSA-P) with four liquids: water, formamide, 2,2′-thiodiethanol and 3-pyridylcarbinol. The solid surface tensions, γsv, were calculated from the advancing contact angles, θA. The surface topography of the polymer films was investigated by atomic force microscopy (AFM). The surface composition of the polymer layers was analyzed by X-ray photoelectron spectroscopy (XPS). The advancing contact angles were found to be independent of the composition of the copolymers, while the receding angles, θR, did decrease with increasing ratio of the polar component [poly(glycolic acid)] in the copolymers. The solid surface tensions calculated from the advancing contact angles of the liquids for all homo- and copolymers were the same within the error limit; the mean value being γsv=35.6 ± 0.2 mJ/m2. The surface roughness, which was obtained from AFM images, increased with increasing poly(glycolic acid) ratio, without affecting the advancing contact angles. The constancy of γsv is attributed to the effect of the surface activity of the nonpolar segments of the polymer chains, which oriented to form the outermost layer of the film. This was confirmed by XPS analysis. Received: 06 November 2000 Accepted: 09 May 2001  相似文献   

5.
Metal oxides are virtually everywhere – only gold has the property not to form an oxide on its surface when exposed to the ambient. As a result, understanding the physics and chemistry of oxide surfaces is a topic of pronounced general interest and, of course, also a necessary prerequisite for many technical applications. The most important of these is certainly heterogeneous catalysis, but one has to realize that – under ambient conditions – virtually all phenomena occurring at liquid/metal and gas/metal interfaces are determined by the corresponding oxide. This applies in particular to friction phenomena, adhesion and corrosion. A necessary – but not necessarily sufficient – condition for unravelling the fundamentals governing this complex field is to analyze in some detail elementary chemical and physical processes at oxide surfaces. Although the Surface Science of metal surfaces has seen a major progress in the past decades, for oxides detailed experimental investigations for well-defined single crystal surfaces still represent a formidable challenge – mostly because of technical difficulties (charging), but to some extent also due to fundamental problems related to the stabilization of polar surfaces. As a result, the amount of information available for this class of materials is – compared to that at hand for metals – clearly not satisfactory. A particular disturbing lack of information is that about the presence of hydrogen at oxide surfaces – either as hydroxy-species or in form of metal hydrides.In the present review we will summarize recent experimental and theoretical information which has become available from single crystal studies on ZnO surfaces. While the number of papers dealing with another oxide, rutile TiO2, is significantly larger (although titania does not exhibit a polar surface), also for zinc oxide a basis of experimental and theoretical knowledge as been accumulated, which – at least for the non-polar surfaces – allows to understand physico-chemical processes on an atomic level for an increasing number of cases. In particular with regards to the interaction with hydrogen a number of – often surprising – observations have been reported recently. Some of them carry implications for the behaviour of hydrogen on oxide surfaces in general. We will present the currently available information for both, experiment and theory, and demonstrate the rather large variety of this material’s surface properties.  相似文献   

6.
Patterned self-assembled monolayers of functionalised alkane thiols were prepared on gold substrates, using UV-photolithography. Two alkane thiols, 11-mercaptoundecanoic acid (MUA) and a fluorinated decane thiol (FDT, CF3(CF2)7CH2CH2SH) were used to fabricate chemically structured surfaces which served as templates for zinc oxide (ZnO) crystallisation. When these patterns, containing high (MUA) and low (FDT) surface energy regions were exposed to a 10 mM zinc nitrate crystallising solution, nucleation occurred selectively on the low energy regions. After 90 min, hexagonal prisms had grown upright on these areas. The crystal growth is uniform with a crystal length of about 1 mum and a diameter between 50 and 100 nm. We attribute the selective growth to a combination of crystallographic frustration of the zinc ions on the high energy regions and an accumulation of hydroxide ions on the low energy regions.  相似文献   

7.
Experimental and theoretical investigations bearing on the question of the wettability, by water, of clean oxygen-free metal surfaces are reviewed. Results on gold, silver, and copper are discussed in terms of surface cleanliness, surface structure, and extent of dispersion (London) force interaction. It is concluded that clean solid metal surfaces are hydrophilic. They will yield a zero degree contact angle when prepared in the amorphous state and possibly in the perfect crystalline state as well. These results do not necessarily preclude the possibility that physical interaction at the metal-water interface consists solely of dispersion forces.  相似文献   

8.
9.
Nanostructured superhydrophobic silicon surfaces with tunable reflectance are fabricated via a simple maskless deep reactive-ion etching process. By controlling the scale of the high-aspect-ratio nanostructures on a wafer-scale surface, surface reflectance is maximized or minimized over the UV-vis-IR range while maintaining superhydrophobic properties.  相似文献   

10.
The synthesis and properties of superhydrophobic surfaces based on binary surface topography made of zinc oxide (ZnO) microrod-decorated micropatterns are reported. ZnO is intrinsically hydrophilic but can be utilized to create hydrophobic surfaces by creating artificial roughness via microstructuring. Micron scale patterns consisting of nanocrystalline ZnO seed particles were applied to glass substrates with a modified ink-jet printer. Microrods were then grown on the patterns by a hydrothermal process without any further chemical modification. Water contact angle (WCA)(1) up to 153° was achieved. Different micro array patterned surfaces with varying response of static contact angle or sessile droplet analysis are reported.  相似文献   

11.
A metal/oxide/polymer ‘interphase’ with mixed organic–inorganic nature insures the high stability and the strength of the adhesive joints in a variety of corrosive environments. To model the interaction of epoxy resin with a metal surface, the interaction of amines of different structure with oxidized zinc surfaces was studied by Scanning Kelvin Probe (SKP), FTIR microscopy in atmospheric conditions, and a.c. and d.c. electrochemical techniques in the aqueous electrolyte. It was shown that bidentate ligand‐ethylendiamine, forming stable chelate complexes reacts with zinc oxide with redeposition of the interphase. In air and water electrolyte, this ligand shifts the potential of Zn/ZnO electrode to the level of the oxide‐free zinc. The amines with low chelating property show low effect on the potential of Zn/ZnO. The SKP was used to measure the potential drop at epoxy resin/zinc interface. On this basis, SKP is proposed as a sensitive nondestructive technique to characterize in situ the interaction of the resin with the metal and the subsequent formation of the interphase in the metal–polymer joints. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Contact angle measurements (captive bubble and sessile drop techniques) were used to determine the surface energy of several acrylic based polymers at the early stage of immersion (t0) in pure and salt water or after several days (tx). The sessile drop technique using various liquid probes allows the calculation of the dispersive, acid and basic components of the surface energy. Significant differences of wettability are observed between the polymers at t0 which tend to remain after immersion along with a general increase of the surface hydrophilicity. The same trend is observed by the “in-situ” captive bubble technique. The surfaces become more hydrophilic with a final contact angle, θ, ranging from 110 to 150 ± 3° in pure water and 130 to 150 ± 4° in 0,51 M salt water. The modifications of surface energy between t0 and tx are not only dependent on water diffusion. One assumption is that the degree of swelling of the immersed surface layer along with the particular dynamics resulting from a surface gel-like structure are significant factors in the measured surface thermodynamics.  相似文献   

13.
The adsorption of poly(vinyl formamide) (PVFA) and the statistic copolymers poly(vinyl formamide-co-vinyl amine) (PVFA-co-PVAm) onto zinc and iron metal particles as well as their oxides was investigated. The adsorbates were characterized by means of XPS, DRIFT spectroscopy, wet chemical analysis, and solvatochromic probes. Dicyano-bis-(1,10-phenanthroline)-iron(II) (1), 3-(4-amino-3-methylphenyl)-7-phenyl-benzo-[1,2-b:4,5-b']difuran-2,6-dione (2), and 4-tert-butyl-2-(dicyano-methylene)-5-[4-(diethylamino)-benzylidene]-Δ(3)-thiazoline (3) as solvatochromic probes were coadsorbed onto zinc oxide to measure various effects of surface polarity. The experimental findings showed that the adsorption mechanism of PVFA and PVFA-co-PVAm strongly depends on the degree of hydrolysis of PVFA and pH values and also on the kind of metal or metal oxide surfaces that were employed as adsorbents. The adsorption mechanism of PVFA/PVFA-co-PVAm onto zinc oxide and iron oxide surfaces is mainly affected by electrostatic interactions. Particularly in the region of pH 5, the adsorption of PVFA/PVFA-co-PVAm onto zinc and iron metal particles is additionally influenced by redox processes, dissolution, and complexation reactions.  相似文献   

14.
Latex particles with an average diameter of 70 nm, functionalized at the surface with carboxylic groups, are chemically coated by layer-by-layer deposition onto a spherical probe attached on an atomic force microscope cantilever. The forces between poly(styrene-acrylic acid) latex nanoparticles and differently terminated zinc oxide surfaces are studied by a homemade atomic force microscope based apparatus. The results confirmed a preferred adhesion of the latex particles to zinc-terminated ZnO faces, 0001, compared to oxygen-terminated and apolar faces. The method proposed allows the measurement of the interaction between nanometric particles and planar surfaces, which may be of interest for different applications in surface and colloid sciences.  相似文献   

15.
Poly(N-isopropylacrylamide) (PNIPAAm)-based thermo-responsive surfaces can switch their wettability (from wettable to non-wettable) and adhesion (from sticky to non-sticky) according to external temperature changes. These smart surfaces with switchable interfacial properties are playing increasingly important roles in a diverse range of biomedical applications; these controlling cell-adhesion behavior has shown great potential for tissue engineering and disease diagnostics. Herein we reviewed the recent progress of research on PNIPAAm-based thermo-responsive surfaces that can dynamically control cell adhesion behavior. The underlying response mechanisms and influencing factors for PNIPAAm-based surfaces to control cell adhesion are described first. Then, PNIPAAm-modified two-dimensional flat surfaces for cell-sheet engineering and PNIPAAm-modified three-dimensional nanostructured surfaces for diagnostics are summarized. We also provide a future perspective for the development of stimuli-responsive surfaces.  相似文献   

16.
The reaction of ammonium chloride with zinc oxide was studied kinetically and thermogravimetrically. Reaction products were identified by IR spectroscopy and X-ray powder diffraction. Ammonium chlorozincates were found to form in the reaction and to decompose to zinc chloride.  相似文献   

17.
Hydrophobic surfaces with adsorbed tri-block copolymers are wetted by oil in spite of the hydrophilic buoy groups of the block copolymer that are present near the surface. The effect of the buoy group length of the adsorbed molecules on the wettability of hydrophobic surfaces is studied by contact angle measurements and by computer modelling.

The computer model predicts an increase in interfacial free energy with increasing buoy group length for equilibrium adsorption of block copolymer from water. Molecules with large buoy groups occupy more lateral space; therefore the “bare” surface gets more exposed and the anchor groups contribute less to the interfacial free energy which thus increases with the buoy group length.

The calculations showed that the variation of the interaction parameter between solvent and buoy group hardly influences the interfacial free energy. In contrast the interaction parameter between solvent and surface influences the interfacial free energy to a large extent because the oil/surface interactions have a lower energetic value as compared to water/surface interactions and therefore the interfacial free energy is lower than in water. The interfacial free energy varies slightly with increasing buoy group length, depending on the value chosen for the solvent/surface interaction parameter.

Advancing and receding contact angles of hexadecane, sunflower oil and hydrolysate (partly hydrolysed sunflower oil) were measured on hydrophobic surfaces. All oil/water contact angles were small, indicating a hydrophobic apolar surface character. It was found that, for oils with a “good” interaction with the surface (hexadecane and sunflower oil), the contact angle has a minimum value at a certain buoy group length. For hydrolysate (less-strong interaction with the surface) the contact angle decreases monotonically with increasing buoy group length. The results for hexadecane, sunflower oil and hydrolysate are in reasonable agreement with the model predictions. The effect of increasing buoy group length is weak; both decreasing and increasing angles are found, depending on the type of oil used.  相似文献   


18.
Surface contaminants are commonly found on films. They get transferred to the surface from incompletely cured silicone liners on the films or owing to migration of additives to the surface from within the film. During the process of ink jet printing (a noncontact printing process), surface contamination affects the shape of the drops (causing the formation of fingers and crescents) and hence image quality. This study uses modeling methods to examine how such surface contamination affects the drops shapes. Subsequently, it models the effect of surface structures (pits) on the drop shape. This study explores how image quality can be controlled in the presence of surface contamination and surface structures.  相似文献   

19.
We have successfully incorporated iron oxide nanoparticles into monodispersed amorphous selenium (a-Se) colloids by regulating the reaction temperature during the synthesis of a-Se. The surfaces of these a-Se colloids could be coated with conformal and smooth shells made of Pt and SiO2. The Se cores could then be removed by etching with hydrazine. The spherical morphology and superparamagnetism were maintained in all these synthetic steps. The presence of Pt and SiO2 on the outer surfaces of these colloidal particles allows one to control their surface functionalities through the formation of alkanethiolate and siloxane monolayers, respectively.  相似文献   

20.
One of the critical issues in gram-negative bacterial adhesion is how wettability regulates adhesion as the surface wettability varies from superhydrophilic to superhydrophobic,and what is the relevant/contributing role of the lipopolysaccharide(LPS)outer layer of the gram-negative shell during this procedure.Herein,by avoiding the unexpected influence induced by the varied topographies,control over gram-negative bacteria adhesion by wettability is achieved on biomimetic hierarchical surfaces, which is mainly mediated by LPS layer.The study provides a methodology to have a good control over bacteria cell adhesion by properly designing wettable surface structures.This design concept is helpful for developing new generations of biomaterials in order to control a variety of diseases induced by gram-negative bacteria,which still continue to be very important and necessary in the fields of biomedicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号