首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
用电化学循环伏安法和电化学石英晶体微天平(EQCM)技术研究了Sb在Au电极上不可逆吸附的电化学过程. 研究结果表明, 在-0.25 V到0.18 V(vs SCE)范围内, Sb可在Au电极上稳定吸附, 并且在0.15 V附近出现特征氧化还原峰. 根据EQCM实验数据, 在电位0.18 V时, Sb在Au电极上的氧化产物是Sb2O3; 同时Sb的吸附阻止了电解液中阴离子和水在Au电极上的吸附. 当电极电位超过0.20 V时, Sb2O3会被进一步氧化成Sb5+化合物, 同时逐渐从Au电极表面脱附.  相似文献   

2.
The electrochemical processes of irreversibly adsorbed antimony (Sbad) on Au electrode were investigated by cyclic voltammetry (CV) and electrochemical quartz crystal microbalance (EQCM). CV data showed that Sbad on Au electrode yielded oxidation and reduction features at about 0.15 V (vs saturated calomel electrode, SCE). EQCM data indicated that Sbad species were stable on Au electrode in the potential region from −0.25 to 0.18 V (vs SCE); the adsorption of Sb inhibited the adsorption of water and anion on Au electrode at low electrode potentials. Sb2O3 species was suggested to form on the Au electrode at 0.18 V. At a potential higher than 0.20 V the Sb2O3 species could be further oxidized to Sb(V) oxidation state and then desorbed from Au electrode.  相似文献   

3.
邻苯二胺的电聚合及膜氧化还原过程的研究   总被引:2,自引:0,他引:2  
石英晶体微天平;循环伏安法;邻苯二胺的电聚合及膜氧化还原过程的研究  相似文献   

4.
用电化学石英晶体微天平(EQCM)研究酸性和碱性介质中甘氨酸在Pt电极上的吸附和氧化过程.结果表明,甘氨酸的解离吸附和氧化行为与溶液的酸碱性密切相关.酸性溶液中甘氨酸吸附较弱,碱性溶液中则产生强吸附物,且当电位低于0V(vs.SCE)时可吸附于Pt电极表面.此外,碱性溶液中甘氨酸还表现出较高的电氧化活性.通过EQCM定量检测上述过程中Pt电极表面的质量变化,测定了不同电位区间(氢区、双电层区和氧区)每传递一个电子所对应的电极表面吸附物种的平均摩尔质量.  相似文献   

5.
采用电化学石英晶体微天平(EQCM)研究了0.5 mol•L-1 NaOH水溶液中铂电极上葡萄糖、半乳糖和乙醇恒电流氧化过程中伴随的电位振荡行为. 两个糖体系的电位振荡过程伴随EQCM频率的同步振荡响应, 而乙醇体系中相应的频率响应却非常小;三个体系振荡过程的同步动态电阻响应均很小, 表明振荡过程频率响应主要为质量效应. 虽然葡萄糖和半乳糖结构相似, 电位和频率振荡的幅度相当, 但频率波数和周期明显不同, 表明电位振荡行为对两者呈现良好的分子识别能力. 本文也讨论了相关振荡机理和NaOH浓度效应及碱性介质中铂电极电化学过程, 提出了所形成的铂氧化物主要是PtO2-3H2Oad以及两糖体系振荡过程中糖酸根阴离子伴随着高/低电位在铂电极上吸/脱附的新观点.  相似文献   

6.
为了进一步探明葡萄糖在铂电极上的氧化机理,用循环伏安法(CV)在-0.9~0.4 V(相对于饱和甘汞参比电极)内研究了葡萄糖在铂电极上催化氧化行为,首次详细报道了葡萄糖在电化学氧化过程中的电位振荡现象,并用电流扫描法表征了葡萄糖的电位振荡情况.电流扫描结果表明,在较慢的电流扫描速度下,电极过程出现了明显的电位振荡.说明电极上产生了毒化中间物,电位振荡是由于毒化中间物在电极上的吸附和在高电位下氧化除去引起的.  相似文献   

7.
《Chemical physics letters》1986,130(3):181-184
The anodic oxidation of the cyanide ion at a platinum electrode in aqueous solution was observed by polarization modulation infrared reflection absorption spectroscopy(PM IRRAS). The cyanide ion was adsorbed on the electrode surface in the potential region more negative than 0.4 V (versus Ag/AgCl). In the more positive region (> 0.4 V ), the adsorbed cyanide ion was oxidized to form the cyanate ion. Cyanogen was not detected during the oxidation reactions; this suggests direct electrochemical formation of the cyanate ion.  相似文献   

8.
CO(2) reduction and CO adsorption on noble metals (Pt, Rh, Pd) and their alloys (Pt-Rh, Pd-Pt, Pd-Rh, Pd-Pt-Rh) prepared as thin rough deposits have been studied by chronoamperometry (CA), cyclic voltammetry (CV) and the electrochemical quartz crystal microbalance (EQCM). The influence of alloy surface composition on the values of surface coverage, eps (electron per site) and potential of the oxidation of CO(2) reduction and CO adsorption products is shown. The oxidation of the adsorbate on Pt-Rh alloys proceeds more easily (at lower potentials) than on pure metals. On the other hand, in the case of Pd-Pt and Pd-Rh alloys the adsorbate oxidation is more difficult and requires higher potentials than on Pt or Rh. The analysis of the EQCM signal is presented for the case of adsorption and oxidation of carbon oxide adsorption products on the electrodes studied. The comparison of adsorption parameters and the EQCM response obtained for platinum group metals and alloys leads to the conclusion that reduced CO(2) cannot be totally identified with adsorbed CO.  相似文献   

9.
The oxidation of formic acid at Pt electrodes in the presence of underpotentially deposited (UPD) Pb has been studied using an electrochemical quartz crystal microbalance (EQCM). Although the current associated with the UPD process is largely obscured by current from the oxidation of formic acid, the mass response is dominated by the changes in UPD coverage. Thus examination of mass responses accompanying cyclic voltammetric and constant-potential experiments reveals both variations in UPD coverage and the manner in which the underpotential deposits are affected by adsorbates derived from formic acid. At low concentrations of formic acid there is some suppression of the underpotential deposit and data suggest that strongly adsorbing intermediates form most rapidly in the hydrogen adsorption region of potential. Mass responses also indicate slight increases in UPD coverage upon removal of strongly adsorbed species by oxidation. Oxidation of high concentrations (0.1 M) of formic acid induces a significant positive shift in the potential for removal of the UPD deposit on the positive scan, and on the subsequent negative scan the rapid reaction between the oxidized Pt surface and formic acid removes the oxide at a higher potential than normal and consequently allows the UPD process to begin at a more positive potential. Adsorption of Pb2+ at oxidized Pt surfaces is also inhibited by the presence of formic acid.  相似文献   

10.
用SNIFTIRS和循环伏安法研究酸性溶液中次亚磷酸钠在多晶铂电极上的电氧化机理.分析了0.5mol/LH2SO4+0.1mol/LNaH2PO2溶液中原位红外反射谱图与电极电位的关系,发现在发生反应的电位下Pt电极上的吸附物种有氢原子和H2PO2,最终的氧化产物是H3PO4而不是H2PO3-,据此提出了酸性介质中次亚磷酸根离子在Pt上氧化的新机理.  相似文献   

11.
运用电化学循环伏安(CV)和电化学原位石英晶体微天平(EQCM)研究了Pt电极表面不可逆吸附Sb原子的电化学特性以及Pt电极上Sb吸附原子对0.1mol·L-1H2SO4溶液中1,2 丙二醇电催化氧化性能的影响.研究发现,当扫描电位的上限Eu≤0.50V(SCE)时,Sb可以稳定地吸附在Pt电极表面,饱和覆盖度为0.34;通过控制电位扫描上限和扫描圈数剥离部份Sb可方便地得到Sbad的不同覆盖度;Pt电极表面Sb吸附原子能在较低的电位下吸附氧,可显著提高1,2 丙二醇电催化氧化活性.与Pt电极相比较,Sb饱和吸附原子修饰的Pt电极使1,2 丙二醇氧化的峰电流增加了近2倍.作者还从表面质量变化提供了吸附原子电催化作用的新数据.  相似文献   

12.
运用电化学循环伏安、原位FTIR反射光谱和石英晶体微天平(EQCM)等方法研究了碱性介质中甲醇在Pt电极表面吸附和氧化行为. 结果表明: 甲醇电氧化与溶液酸碱性有密切的关系. 酸性介质中甲醇在Pt电极上的CV曲线有两个正向氧化峰, 而碱性介质中只有一个正向氧化峰, 第二个氧化峰的消失可能是由于碱性介质中Pt电极在高电位下形成高氧化态的氧物种毒化其表面引起的. 碱性介质中甲醇解离吸附产物的数量比酸性介质的明显减少, 对甲醇氧化的第一个氧化峰表现出更高的电催化活性. 目前实验条件下, 原位FTIR反射光谱检测到: 碱性介质中甲醇电氧化的最终产物是CO2和CO32-, 反应中间体主要为HCOO物种. 从电极表面质量定量变化的角度提供了甲醇反应机理的新数据.  相似文献   

13.
碱性介质中甘氨酸在纳米金膜电极上的吸附和氧化   总被引:4,自引:0,他引:4  
运用原位红外反射光谱(in situ FTIRS)和电化学石英晶体微天平(EQCM)在分子水平上研究了碱性介质中甘氨酸在纳米金膜电极上的解离吸附和氧化过程.结果表明,甘氨酸在很低的电位下(-0.8 V, vs SCE)就可发生解离吸附.其解离产物氰基(CN-)与电极表面存在较强的化学吸附作用,形成AuCN-物种(红外吸收谱峰位于2100 cm-1附近).吸附在纳米金膜表面的CN-给出红外吸收显著增强、红外谱峰方向倒反和半峰宽增加的异常红外效应特征.吸附态CN-在低电位抑制H2O和OH-的吸附,当电位高于0.2 V可氧化产生OCN-;进一步升高电位到0.3 V则形成.溶液相物种OCN-和对应的红外吸收峰分别为2169 cm-1和2145 cm-1.实验结果指出,金以的形式溶解是导致电极表面质量显著减少的主要原因.  相似文献   

14.
硫酸溶液中Pt电极表面过程的EQCM研究   总被引:5,自引:0,他引:5  
应用电化学循环伏安和石英晶体微天平(EQCM)方法研究了0.1mol·L-1硫酸溶液中Pt电极表面的吸附和氧化过程.从电极表面质量变化的结果分析,可认为正向电位扫描时氢区表面质量的增加是由于水分子取代Had引起的,而双电层区的质量增加则是由于水的吸附模式逐渐由氢端吸附转向氧端吸附所致.根据频率变化和电量数据,进一步推算出水在双电层区是以低放电吸附形式出现的,1molPt原子和水分子只发生0.054mol的电荷转移.本文结果可为认识Pt电极表面过程提供定量的新数据.  相似文献   

15.
运用电化学循环伏安 ,石英晶体微天平 (EQCM )和原位FTIR反射光谱等方法研究了酸性介质中乙醇在碳载纳米Pt膜电极上吸附和氧化行为 .结果表明 ,乙醇的电氧化与溶液酸碱性及电极表面氧物种有密切的关系 ,并指出乙醇电催化氧化是通过解离吸附产物和反应中间体双途径机理进行的 .在实验条件下 ,经原位FTIR反射光谱检测 ,解离吸附产物为CO ,反应中间体主要有CH3COOH和CH3CHO等物种 .  相似文献   

16.
采用常规电化学伏安技术和电化学原位表面增强拉曼光谱(in-situ SERS)技术研究了不同介质中乙醇在粗糙铂电极上的电催化氧化行为. 发现不论在酸性、中性还是碱性介质中, 乙醇均能在粗糙铂电极上自发氧化解离生成强吸附中间体CO; 碱性介质中, CO在粗糙铂电极上基本氧化完全的电位(0.20 V)比中性和酸性介质中(0.50 V)负移了约0.30 V. 而乙醇在粗糙铂电极上CV正向扫描的氧化峰电位(-0.20 V)比酸性介质中(0.65 V)负移了约0.85 V. 比较不同介质中乙醇和CO在粗糙铂电极上的氧化峰电流和峰电位可以发现, 粗糙铂电极在碱性介质中对乙醇和CO的电催化氧化活性比中性和酸性介质中更强; 可以推测, 不论在酸性、中性还是碱性介质中, 乙醇在粗糙铂电极上的氧化过程均按双途径机理进行.  相似文献   

17.
The processes involved in the Se electrodeposition, mainly the one related to the formation of H2Se species on Au electrode in perchloric acid solutions, have been investigated through cyclic voltammetry, electrochemical quartz crystal microbalance (EQCM), rotating ring-disc electrode (RRDE), and atomic force microscopy (AFM) techniques. In the experiments performed with the EQCM, with the potential sweep in the negative direction, the responses for the mass variation were divided in three well-defined potential regions: A (from 1.55 to 0.35 V), B (from 0.35 to −0.37 V), and C (from −0.37 to −0.49 V). It was verified that the following processes can occur, respectively: the species (AuO)2H2SeO3 was desorbed during the AuO reduction, the reduction of Se(IV) to Se(0), and the formation of H2Se. When the potential was swept in the positive direction, the responses for the mass variation were divided in four well-defined potential regions: D (from −0.49 to 0.66 V), E (from 0.66 to 0.99 V), F (from 0.99 to 1.26 V), and G (from 1.26 to 1.55 V), and the described processes in these regions were, respectively: the Se deposition and adsorption of water molecules and/or perchlorate ions, the Se dissolution, the Se incorporating mass in the form of HO–Se, and the Au oxidation (all potentials are referred to the Ag/AgCl electrode). Making use of the RRDE, using the collection technique, the formation of H2Se species during the Se electrodeposition was investigated. Therefore, it was confirmed that this species is formed on the disc electrode between −0.3 and −0.55 V vs the Ag/AgCl potential range (collecting the oxidized compound onto the ring electrode). AFM images also indicated that the surface topography of the Se-massive deposit on Au is different from the images registered after the formation of H2Se species, confirming the cathodic stripping of Se.  相似文献   

18.
In the present study, the surface poisoning of electrocatalytic monosaccharide oxidation reactions at gold electrodes were investigated. In the cyclic voltammetric studies, the electrocatalytic oxidation of aldohexose and aldopentose type monosaccharides, aminosugars, acetyl-glucosamine and glucronamide were observed at gold plate electrodes in alkaline medium. However, in controlled-potential electrolytic studies ranging −0.3 to −0.2 V in reaction solutions, current flows during electrolyses decreased quickly with time, except when glucosamine was used as a substrate.Results from surface enhanced infrared adsorption (SEIRA) spectroscopic measurements at an evaporated gold electrode for the electrocatalytic oxidation of glucose in 0.1 mol dm−3 NaOH at −0.3 V and Gaussian simulated spectra indicated that the gluconic acid as a 2-electron oxidation product and/or its analogs adsorbed onto the gold surface. Electrochemical quartz crystal microbalance (EQCM) measurement results, along with surface adsorption results from surface poisoning at the gold electrode during electrolytic reactions, suggested that gluconic acid and/or its analogs adsorbed vertically onto electrode surfaces in a full monolayer packing-like conformation. In the case of the electro oxidation of glucosamine in 0.1 mol dm−3 NaOH at −0.2 V, the obtained SEIRA spectra and EQCM results, clearly indicated that the glucosaminic acid as a 2-oxidation glucosamine product did not strongly bind onto the gold electrode surface.  相似文献   

19.
A variety of electrochemical approaches has been used to investigate the adsorption of NAD+, NADH and the NAD-NAD dimer from aqueous solution at glassy carbon electrodes (GCE) with supplementary studies of adsorption at pyrolytic graphite and platinum electrodes from aqueous media and at GCE from DMSO solution. The following hypotheses are advanced concerning the adsorption orientation: at carbon electrodes, on which NADH is not adsorbed, NAD+ produced by anodic oxidation of the NADH is first rapidly adsorbed in a planar configuration relative to the electrode surface, which is probably bound to the surface through the adenine moiety; there is then a relatively slow reorientation of the adsorbed NADH molecules to a perpendicular orientation relative to the electrode surface, which adsorbate is more tightly bound to the surface than the planar oriented adsorbate and which likely involves interaction between parallel adenine and pyridinium rings. Reduction (one-electron process) of NAD+ at the GCE produces the NAD-NAD dimer, which, at a clean electrode surface, involves a diffusion-controlled process and an adsorption-controlled process; the latter is due to formation of adsorbed dimer, which is more strongly adsorbed than NAD+. The dimer is oxidized at the GCE only if it is adsorbed. The factors controlling and involved in the adsorption processes have been examined with particular reference to the use of anodic voltammetry for the analytical determination of NADH.  相似文献   

20.
The reaction kinetics for the oxidation of methanol on a platinum electrode have been examined under precisely controlled conditions. The Tafel relations at constant surface coverages of the strongly adsorbed species show the existence of two potential regions where the predominant reaction path is different. The surface reaction of the strongly adsorbed species with OH(a) is rate determining at E > ca. 0.55 V, while the oxidative adsorption of methanol to form a reactive intermediate becomes the rate-determining step at E < ca. 0.55 V. In the latter potential region, the strongly adsorbed species is not oxidized so that its accumulation on the surface decreases the rate of the oxidative adsorption and thereby the total oxidation rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号