首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this letter, we have studied the tunneling effects and fluctuations of spinor Bose-Einstein condensates in optical lattice. It is found that there exist tunneling effects and fluctuations between lattices l and l + 1, l and l - 1, respectively. In particular, when the optical lattice is infinitely long and the spin excitations are in the long-wavelength limit, tunneling effects disappear between lattices I and l+ 1, and I and l - 1. In this case the fluctuations are a constant, and the magnetic soliton appears.  相似文献   

2.
In this letter, we have studied the tunneling effects and fluctuations of spinor Bose-Einstein condensates in optical lattice. It is found that there exist tunneling effects and fluctuations between lattices l and l 1, l and l - 1,respectively. In particular, when the optical lattice is infinitely long and the spin excitations are in the long-wavelength limit, tunneling effects disappear between lattices l and l 1, and l and l - 1. In this case the fluctuations are a constant,and the magnetic soliton appears.  相似文献   

3.
We have studied tunneling of spinor Bose–Einstein condensate in an optical lattice. It is found that, when the system being prepared in a squeezed coherent state, there exist the quantum tunneling between lattices l and l+1, l and l−1, respectively. In particular, when the optical lattice is infinitely long and the spin excitations are in the long-wavelength limit, quantum tunneling disappear between lattices l and l+1, and that l and l−1, in this case the magnetic soliton appears.  相似文献   

4.
In this letter, we have studied quantum tunneling of two-species cold bosonic atoms in an optical lattices. When the optical lattice is not infinitely long and the spin excitations are not in the long-wavelength limit, quantum tunnelings are presented.  相似文献   

5.
We have studied quantum tunneling in an order-parameter-preserving antiferromagnet with the help of Holstein-Primakoff transformation. It is found that, when the system being prepared in a coherent state, there exist the quantum tunneling between lattices k and k+1, k and k−1, respectively. In particular, when the lattice is infinitely long and the spin excitations are in the long-wavelength limit, quantum tunneling disappear between lattices k and k+1, and that k and k−1, in this case the magnetic soliton appears.  相似文献   

6.
We have studied the tunneling and fluctuations of a dipolar Bose–Einstein condensate in an optical lattice, it is found that there exist the tunneling and fluctuations between lattices l and l+1, l and l−1, respectively. In particular, when the optical lattice is infinitely long and the spin excitations are in the long-wavelength limit, tunneling effects disappear between lattices l and l+1, and that l and l−1, in this case the fluctuations are a constant, and the magnetic soliton appears.  相似文献   

7.
赵兴东  张莹莹  刘伍明 《物理学报》2019,68(4):43703-043703
囚禁在光学晶格中的旋量凝聚体由于其长的相干性和可调控性,使其成为时下热点的多比特量子计算的潜在候选载体,清楚地了解该体系的自旋和磁性的产生和调控就显得尤为重要.本文主要从理论上回顾了光晶格原子自旋链的磁性的由来和操控手段.从激光冷却原子出发,制备旋量玻色-爱因斯坦凝聚体,并装载进光晶格,最后实现原子自旋链,对整个过程的理论研究进行了综述;就如何产生和操控自旋激发进行了详细探讨,其中包括磁孤子的制备;讨论了如何将原子自旋链应用于量子模拟.对光学晶格中的磁激发研究将会对其在冷原子物理、凝聚态物理、量子信息等各方向的应用起指导性作用.  相似文献   

8.
We compare magnetism in two artificial lattice structures, a quantum dot array formed in a two-dimensional electron gas and an optical lattice loaded with repulsive, contact-interacting fermionic atoms. When the tunneling between the lattice sites is strong, both lattices are non-magnetic. With reduced tunneling in the tight-binding limit, the shell-filling of the single-site quantum wells combined with Hund's rule determines the magnetism. This leads to a systematic magnetic phase diagram with non-magnetic, ferromagnetic and antiferromagnetic phases.  相似文献   

9.
We review our recent theoretical advances in phase transition of cold atoms in optical lattices, such as triangular lattice, honeycomb lattice, and Kagomé lattice. By employing the new developed numerical methods called dynamical cluster approximation and cellular dynamical mean-field theory, the properties in different phases of cold atoms in optical lattices are studied, such as density of states, Fermi surface and double occupancy. On triangular lattice, a reentrant behavior of phase translation line between Fermi liquid state and pseudogap state is found due to the Kondo effect. We find the system undergoes a second order Mott transition from a metallic state into a Mott insulator state on honeycomb lattice and triangular Kagomé lattice. The stability of quantum spin Hall phase towards interaction on honeycomb lattice with spin-orbital coupling is systematically discussed. And we investigate the transition from quantum spin Hall insulator to normal insulator in Kagomé lattice which includes a nearest-neighbor intrinsic spin-orbit coupling and a trimerized Hamiltonian. In addition, we propose the experimental protocols to observe these phase transition of cold atoms in optical lattices.  相似文献   

10.
朱少兵  钱军  王育竹 《中国物理 B》2017,26(4):46702-046702
Superexchange and inter-orbital spin-exchange interactions are key ingredients for understanding(orbital) quantum magnetism in strongly correlated systems and have been realized in ultracold atomic gases.Here we study the spin dynamics of ultracold alkaline-earth atoms in an optical lattice when the two exchange interactions coexist.In the superexchange interaction dominating regime,we find that the time-resolved spin imbalance shows a remarkable modulated oscillation,which can be attributed to the interplay between local and nonlocal quantum mechanical exchange mechanisms.Moreover,the filling of the long-lived excited atoms affects the collapse and revival of the magnetization dynamics.These observations can be realized in state-dependent optical lattices combined with the state-of-the-art advances in optical lattice clock spectroscopy.  相似文献   

11.
We describe a method to create fractional quantum Hall states of atoms confined in optical lattices. We show that the dynamics of the atoms in the lattice is analogous to the motion of a charged particle in a magnetic field if an oscillating quadrupole potential is applied together with a periodic modulation of the tunneling between lattice sites. In a suitable parameter regime the ground state in the lattice is of the fractional quantum Hall type, and we show how these states can be reached by melting a Mott-insulator state in a superlattice potential. Finally, we discuss techniques to observe these strongly correlated states.  相似文献   

12.
考虑玻色-爱因斯坦凝聚体局限于周期性的双色光晶格势阱中,研究其中的Bloch能带结构、第一能隙和第二能隙的Landau-Zener隧穿行为.结果表明,随着双色光晶格势阱的主、次晶格相位差从0增加到π,Bloch能带中第一能隙宽度逐渐增加,而第二能隙宽度逐渐减小.同时发现,双色光晶格势阱的主、次晶格深度及其相位差对第一能隙和第二能隙的Landau-Zener隧穿性质有重要的影响.  相似文献   

13.
We show that vortices, induced in cold atom superfluids in optical lattices, may order in a novel vortex-Peierls ground state. In such a state vortices do not form a simple lattice but arrange themselves in clusters, within which the vortices are partially delocalized, tunneling between classically degenerate configurations. We demonstrate that this exotic quantum many-body state is selected by an order-from-disorder mechanism for a special combination of the vortex filling and lattice geometry that has a macroscopic number of classically degenerate ground states.  相似文献   

14.
We report the observation of strongly damped dipole oscillations of a quantum degenerate 1D atomic Bose gas in a combined harmonic and optical lattice potential. Damping is significant for very shallow axial lattices (0.25 photon recoil energies), and increases dramatically with increasing lattice depth, such that the gas becomes nearly immobile for times an order of magnitude longer than the single-particle tunneling time. Surprisingly, we see no broadening of the atomic quasimomentum distribution after damped motion. Recent theoretical work suggests that quantum fluctuations can strongly damp dipole oscillations of a 1D atomic Bose gas, providing a possible explanation for our observations.  相似文献   

15.
We have observed tunneling suppression and photon-assisted tunneling of Bose-Einstein condensates in an optical lattice subjected to a constant force plus a sinusoidal shaking. For a sufficiently large constant force, the ground energy levels of the lattice are shifted out of resonance and tunneling is suppressed; when the shaking is switched on, the levels are coupled by low-frequency photons and tunneling resumes. Our results agree well with theoretical predictions and demonstrate the usefulness of optical lattices for studying solid-state phenomena.  相似文献   

16.
The similarity between matter waves in periodic potential and solid-state physics processes has triggered the interest in quantum simulation using Bose-Fermi ultracold gases in optical lattices. The present work evidences the similarity between electrons moving under the application of oscillating electromagnetic fields and matter waves experiencing an optical lattice modulated by a frequency difference, equivalent to a spatially shaken periodic potential. We demonstrate that the tunneling properties of a Bose-Einstein condensate in shaken periodic potentials can be precisely controlled. We take additional crucial steps towards future applications of this method by proving that the strong shaking of the optical lattice preserves the coherence of the matter wavefunction and that the shaking parameters can be changed adiabatically, even in the presence of interactions. We induce reversibly the quantum phase transition to the Mott insulator in a driven periodic potential.  相似文献   

17.
The diffusion of hydrogen and deuterium monomers on hole-doped graphene (a planar graphitic lattice), the outside wall and the inside wall of hole-doped (6, 0) single-walled carbon nanotubes (a curved graphitic lattice) was investigated using density functional theory and density functional perturbation theory. The jump frequencies for the over-barrier transition and phonon-assisted quantum tunneling were calculated by transition state theory and small-polaron theory, respectively. The effects of the local curvature of the surface and the hole doping on the thermodynamic and kinetic properties of a hydrogen monomer on these graphitic lattices are discussed. Our results demonstrate that it is sufficient to judge the diffusional mobility of a hydrogen monomer on graphitic lattices from just the over-barrier transition, no matter how much it is curved and hole doped, while the quantum tunneling can be safely neglected because it is significantly suppressed by the covalent bonding of hydrogen with the graphitic lattice.  相似文献   

18.
We investigate the quantum transport of a single particle trapped in a tilted optical lattice modulated with periodical delta kicks, and attempt to figure out the relationship between chaos and delocalization or quantum tunneling. We illustrate some resonant parameter lines existing in both chaotic and regular parameter regions, and discover the velocity of delocalization of particle tends to faster in the resonant line as well as the lines in which the lattice tilt is an integral multiple n of tilt driving frequency in chaotic region. While the degree of localization is linked to the distance between parameter points and resonant lines. Those useful results can be experimentally applied to control chaos-assisted transport of single particle held in optical lattices.  相似文献   

19.
We demonstrate the possibility of creating and controlling an ideal and trimerized optical Kagomé lattice, and study the low temperature physics of various atomic gases in such lattices. In the trimerized Kagomé lattice, a Bose gas exhibits a Mott transition with fractional filling factors, whereas a spinless interacting Fermi gas at 2/3 filling behaves as a quantum magnet on a triangular lattice. Finally, a Fermi-Fermi mixture at half-filling for both components represents a frustrated quantum antiferromagnet with a resonating-valence-bond ground state and quantum spin liquid behavior dominated by a continuous spectrum of singlet and triplet excitations. We discuss the method of preparing and observing such a quantum spin liquid employing molecular Bose condensates.  相似文献   

20.
Overlaying commensurate optical lattices with various configurations called superlattices can lead to exotic lattice topologies and, in turn, a discovery of novel physics. In this study, by overlapping the maxima of lattices, a new isolated structure is created, while the interference of minima can generate various “sublattice” patterns. Three different kinds of primitive lattices are used to demonstrate isolated square, triangular, and hexagonal “sublattice” structures in a two-dimensional optical superlattice, the patterns of which can be manipulated dynamically by tuning the polarization, frequency, and intensity of laser beams. In addition, we propose the method of altering the relative phase to adjust the tunneling amplitudes in “sublattices”. Our configurations provide unique opportunities to study particle entanglement in “lattices” formed by intersecting wells and to implement special quantum logic gates in exotic lattice geometries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号