首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Objectives

Diffusion-weighted imaging with background body signal suppression (DWIBS) provides both qualitative and quantitative imaging of breast lesions and are usually performed before contrast material injection (CMI). This study aims to assess whether the administration of gadolinium significantly affects DWIBS imaging.

Methods

200 patients were prospectively evaluated by MRI with STIR, TSE-T2, pre-CMI DWIBS, contrast enhanced THRIVE-T1 and post-CMI DWIBS sequences. Pre and post-CMI DWIBS were analyzed searching for the presence of breast lesions and calculating the ADC value. ADC values of ≤ 1.44 × 10- 3 mm2/s were considered suspicious for malignancy. This analysis was then compared with the histological findings. Sensitivity, specificity, diagnostic accuracy (DA), positive predictive value (PPV) and negative (NPV) were calculated for both sequences and represented by ROC analysis. Pre and post-CMI ADC values were compared by using the paired t test.

Results

In 150/200 (59%) patients, pre and post-CMI DWIBS indicated the presence of breast lesions, 53 (35%) with ADC values of > 1.44 × 10- 3 mm2/s and 97 (65%) with ADC ≤ 1.44 × 10- 3 mm2/s. Pre-CMI and post-DWIBS sequences obtained the same sensitivity, specificity, DA, PPV and NPV values of 97%, 83%, 89%, 79% and 98%. The mean ADC value of benign lesions was 1.831 ± 0.18 × 10- 3 mm2/s before and 1.828 ± 0.18 × 10- 3 mm2/s after CMI. The mean ADC value of the malignant lesions was 1.146 ± 0.16 × 10- 3 mm2/s before and 1.144 ± 0.16 × 10- 3 mm2/s after CMI. No significant difference was found between pre and post CMI ADC values (p > 0.05).

Conclusion

DWIBS imaging is not influenced by CMI. Breast MR protocol could be modified by placing DWIBS after dynamic contrast enhanced sequences in order to maximize patient cooperation.  相似文献   

2.

Purpose

To evaluate the diagnostic performance of an apparent diffusion coefficient (ADC) and quantitative kinetic parameters in patients with newly diagnosed breast cancer.

Materials and Methods

We enrolled 169 lesions in 89 patients with breast cancer who underwent dynamic contrast-enhanced MRI (DCE-MRI) and diffusion-weighted imaging (DWI). Comparisons between benign and malignant lesions were performed for lesion type (mass or nonmass-like enhancement), size (≥ 1 cm or < 1 cm), ADC, kinetic parameters and the presence of a US correlate.

Results

There were 63 benign and 106 malignant lesions. The mean size and initial peak enhancement of the benign lesions were significantly lower than those of malignant lesions (P < 0.001 for both). The ADC of the benign lesions was significantly higher than that of malignant lesions (1.42 × 10− 3 mm2/sec vs. 1.04 × 10− 3 mm2/sec; P < 0.001). The area under the receiver operating characteristic curve (AUC) for predicting malignancy was 0.87 for the combined parameters of size, ADC, and initial peak enhancement, which was higher than those of each parameter.

Conclusions

Combination of quantitative kinetic parameters and ADC showed higher diagnostic performance for predicting malignancy than each parameter alone for the evaluation of patients with breast cancer.  相似文献   

3.

Purposes

To evaluate the diagnostic value of diffusion-weighted MRI (DWI) and combination of conventional MRI and DWI to predict metastatic axillary lymph nodes in breast cancer.

Materials and methods

Two hundred fifty-two breast cancer patients with 253 axillae were included. The morphological parameters on axial T2-weighted images without fat saturation and apparent diffusion coefficient (ADC) values were retrospectively analyzed. An independent t-test/chi-square test and receiver operating characteristics (ROC) curve analysis were used.

Results

On conventional MRI, short and long axis length, maximal cortical thickness, relative T2 value, loss of fatty hilum (p < 0.001 for each), and eccentric cortical thickening (p < 0.003) were statistically significantly different between the metastatic and nonmetastatic groups. The short axis to long axis ratio was not a statistically significant parameter. The ADC value was significantly different between the 2 groups, with an AUC that was higher than that of conventional MR parameters (AUC, 0.815; threshold, ≤ 0.986 × 10–3 mm2/sec; sensitivity, 75.8%; specificity, 83.9%). Using the adopted thresholds for each parameter, a total number of findings suggesting malignancy of 4 or higher was determined as the threshold, with high specificity (90.1%).

Conclusion

Using conventional MRI and DWI, we can evaluate the axilla in breast cancer with high specificity.  相似文献   

4.

Purpose

The objective of this paper was to investigate the value of apparent diffusion coefficients (ADCs) for differential diagnosis among solid pancreatic masses using respiratory triggered diffusion-weighted MR imaging with inversion-recovery fat-suppression technique (RT-IR-DWI) at 3.0 T.

Materials and Methods

20 normal volunteers and 72 patients (Pancreatic ductal adenocarcinoma [PDCA, n = 30], mass-forming pancreatitis [MFP, n = 15], solid pseudopapillary neoplasm [SPN, n = 12], and pancreatic neuroendocrine tumor[PNET, n = 15]) underwent RT-IR-DWI (b values: 0 and 600 s/mm2) at 3.0 T. Results were correlated with histopathologic data and follow-up imaging. ADC values among different types of pancreatic tissue were statistically analyzed and compared.

Results

Statistical difference was noticed in ADC values among normal pancreas, MFP, PDCA, SPN and PNET by ANOVA (p < .001). Normal pancreas had the highest ADC value, then followed by PNET, PDCA, MFP and SPN. There was noticeable statistical difference in ADC values among PDCA, MFP and normal pancreas by Least Significant Difference (LSD) (p < .001). ADC of SPN was statistically lower than that of PNET (p = 0.1800 × 10− 4), PDCA (p = 0.0300 × 10− 4) and normal pancreas (p = 0.0007 × 10− 4). ADC of PNET was statistically lower than that of normal pancreas (p = 0.0360) and higher than that of MFP (p = 9.3000 × 10− 4).

Conclusions

ADC measurements using RT-IR-DWI at 3.0 T may aid to disclose the histopathological pattern of normal pancreas and solid pancreatic masses, which may be helpful in characterizing solid pancreatic lesions.  相似文献   

5.

Purpose

To compare diffusion weighted imaging with background suppression (DWIBS) sequence with classic spectral diffusion sequence (DWI) with and without respiratory gating in mediastinal lymph node analysis at 3 T.

Materials and methods

26 patients scheduled for mediastinoscopic lymph node analysis, prospectively undergone a thoracic 3 T MRI with DWIBS (FatSat = STIR; TR/TE = 6674.1/44.7 ms; IR = 260 ms) and DWI sequences (FatSat = SPIR; TR/TE = 1291/59.6 ms) (b = 0-400-800 s/mm2) with and without (free breathing) respiratory gating.Images at b = 800 were analyzed by two radiologists. They performed qualitative analysis of fat-sat homogeneity and motion artifacts, rated from 0 to 4, and quantitative evaluation by studying signal to background (STB) of lymph nodes.

Results

Quality of fat suppression was significantly higher for DWIBS than for DWI both for free-breathing (score 3.48 ± 0.65 vs. 1.76 ± 0.96, p < 0.0001) and respiratory-gated scans (3.17 ± 0.77 vs. 1.72 ± 0.73, p = 0.0001). Similarly, artifacts were reduced with DWIBS (3.16 ± 0.47 vs. 1.76 ± 0.59, p < 0.0001; 3.0 ± 0.73 vs. 2.04 ± 0.53, p = 0.0001). Quantitative analysis showed higher STB with DWIBS (3.26 ± 1.83 vs. 0.98 ± 0.44, p < 0.0001; 3.56 ±, 2.09 vs. 0.92 ± 0.59, p < 0.0001). Gating did not improve image quality and STB on DWIBS (p > 0.05).

Conclusion

In thoracic MRI, ungated DWIBS sequence improves fat-sat homogeneity, reduces motion artifacts and increases STB of lymph nodes. Respiratory gating does not improve DWIBS image quality.  相似文献   

6.

Objective

The purpose of this study was to assess the influence of liver cirrhosis and portal hypertension on diffusion coefficients of the spleen.

Material and Methods

We retrospectively evaluated 50 patients with liver cirrhosis and 50 patients without any history of liver disease who underwent magnetic resonance imaging of the upper abdomen, including echo planar diffusion-weighted imaging using b values of 50, 300 and 600 mm2/s. Spleen apparent diffusion coefficient (ADC), liver ADC, muscle ADC and normalized spleen ADC (defined as the ratio of spleen ADC to muscle ADC) were compared between cirrhotic patients and patients in the control group and correlated with Child–Pugh stages. Reproducibility was assessed by measuring interclass correlation coefficient (n = 11). Additionally, in eight patients, ADC measurements were performed 1 day before and 3 days after transjugular intrahepatic portosystemic shunt (TIPSS) implantation.

Results

Compared with control subjects, patients with cirrhosis and portal hypertension had significantly higher spleen ADCs (P = .0001). There was a statistically significant correlation between Child–Pugh grade and spleen ADC (Pearson correlation coefficient, observer 1 r = 0.6, P = .0001; observer 2 r = 0.5, P = .0001). After TIPSS implantation, we observed a reduction in spleen ADC values. Spleen ADC measurements showed a high reproducibility (interclass correlation coefficient 0.75, P = .001).

Conclusion

Our data suggest that different stages of liver cirrhosis and portal hypertension correlate with ADC values of the spleen. Furthermore, ADC values of the spleen decrease after TIPSS implantation. Further studies are required to understand the potential clinical values of these observations.  相似文献   

7.

Background and purpose

The use of diffusion-weighted magnetic resonance imaging (DW-MRI) as a surrogate biomarker of response in preclinical studies is increasing. However, before a biomarker can be reliably employed to assess treatment response, the reproducibility of the technique must be established. There is a paucity of literature that quantifies the reproducibility of DW-MRI in preclinical studies; thus, the purpose of this study was to investigate DW-MRI reproducibility in a murine model of HER2 + breast cancer.

Materials and methods

Test–Retest DW-MRI scans separated by approximately six hours were acquired from eleven athymic female mice with HER2 + xenografts using a pulsed gradient spin echo diffusion-weighted sequence with three b values [150, 500, and 800 s/mm2]. Reproducibility was assessed for the mean apparent diffusion coefficient (ADC) from tumor and muscle tissue regions.

Results

The threshold to reflect a change in tumor physiology in a cohort of mice is defined by the 95% confidence interval (CI), which was ± 0.0972 × 10- 3 mm2/s (± 11.8%) for mean tumor ADC. The repeatability coefficient defines this threshold for an individual mouse, which was ± 0.273 × 10- 3 mm2/s. The 95% CI and repeatability coefficient for mean ADC of muscle tissue were ± 0.0949 × 10- 3 mm2/s (± 8.30%) and ± 0.266 × 10- 3 mm2/s, respectively.

Conclusions

Mean ADC of tumors is reproducible and appropriate for detecting treatment-induced changes on both an individual and mouse cohort basis.  相似文献   

8.

Purpose

To investigate the value of apparent diffusion coefficient (ADC) to predict and monitor the therapy response for cervical cancer patients receiving concurrent radiochemotherapy, and to analyze the influence of different b-value combinations on ADC-based evaluation of treatment response.

Material and Methods

Seventy-five cervical cancer patients treated with radiochemotherapy received conventional MRI and DWI prior to therapy, after 2 weeks of therapy, after four weeks of therapy and after therapy completion. Treatment response was classified as complete response (CR, n = 35), partial response (PR, n = 22) and stable disease (SD, n = 18), which was determined according to final tumor size after 6 months of therapy completion. Dynamic changes of apparent diffusion coefficients (ADC) and tumor size in the three tumor groups were observed and compared. All the ADCs were calculated from b = 0, 600 s/mm2 and b = 0, 1000 s/mm2.

Results

The ADC increased percentage was higher in CR group than those in PR and SD groups after two weeks and four weeks of therapy, with significant differences in absolute ADCs between CR and PR, SD groups after therapy completion; the overall discriminatory capability for differentiation of CR and PR, SD groups was higher for high b-value combination (0, 1000 s/mm2) than for low b-value combination (0, 600 s/mm2).

Conclusion

DWI can be used as a predictive and monitoring biomarker of treatment response to radiochemotherapy in patients with cervical cancer. High b-value combination may be more reliable to evaluate the treatment response for cervical cancer.  相似文献   

9.

Purpose

To compare the diagnostic performance of the noncontrast MRI including DWI to the standard MRI for detecting hepatic malignancies in patients with chronic liver disease.

Materials and methods

We included 135 patients with 136 histologically-confirmed hepatocellular carcinomas (HCCs), 12 cholangiocarcinomas, and 34 benign lesions (≤ 2.0 cm), and 22 patients with cirrhosis but no focal liver lesion who underwent 3.0 T liver MRI. Noncontrast MRI set (T1- and T2-weighted images and DWI) and standard MRI set (gadoxetic acid-enhanced and noncontrast MRI) were analyzed independently by three observers to detect liver malignancies using receiver operating characteristic analysis.

Results

The Az value of the noncontrast MRI (mean, 0.906) was not inferior to that of the combined MRI (mean, 0.924) for detecting malignancies by all observers (P > 0.05). For each observer, no significant difference was found in the sensitivity and specificity between the two MRI sets for detecting liver malignancies and distinguishing them from benign lesions (P > 0.05), whereas negative predictive value was higher with the combined MRI than with the noncontrast MRI (P = 0.0001). When using pooled data, the sensitivity of the combined MRI (mean 94.8%) was higher than that of the noncontrast MRI (mean, 91.7%) (P = 0.001), whereas specificity was equivalent (78.6% vs 77.5%).

Conclusion

Noncontrast MRI including DWI showed reasonable performance compared to the combined gadoxetic acid-enhanced and noncontrast MRI set for detecting HCC and cholangiocarcinoma and differentiating them from benign lesions in patients with chronic liver disease.  相似文献   

10.

Purpose

To present diffusion and perfusion magnetic resonance imaging (MRI) characteristics of focal nodular hyperplasia (FNH) of the liver.

Materials and Methods

Thirty-five patients with 52 FNHs (21 were pathologically-confirmed) underwent MRI at 1.5-T device. MR diffusion [diffusion-weighted imaging (DWI)] was performed using a free-breathing single-shot, spin-echo, echo-planar sequence with b gradient factor value of 500 s/mm². MR perfusion [perfusion-weighted imaging (PWI)] consisted of a 3D free-breathing LAVA sequence repeated up to 5 minutes after injection of 7 mL Gd-BOPTA (MultiHance, Bracco, Italy) and 20 mL saline flush at a flow rate of 4 mL/s. Apparent diffusion coefficient (ADC) and time-signal intensity curve (TSIC) were obtained for both normal liver and each FNH by two reviewers in conference; maximum enhancement (ME) percentage, time to peak enhancement (TTP), and maximal slope (MS) were also calculated.

Results

On DWI mean ADC value was 1.624×10− 3 mm2/s for normal liver and 1.629×10− 3 mm2/s for FNH. ADC value for each FNH and the normal liver was not statistically different (P= .936). On PWI, TSIC-Type 1 (quick and marked enhancement and quick decay followed by slowly decaying) was observed in all 52 FNHs, and TSIC-Type 2 (fast enhancement followed by slowly decaying plateau) in all normal livers. The mean ME, TTP and MS values were significantly different for FNH and normal liver (P= .005).

Conclusion

FNHs of the liver showed typical diffusion and perfusion MRI characteristics in all cases. On the ADC map, we could get similar value between the FNHs and the background parenchyma. On the perfusion imaging, FNHs showed a different pattern distinguished from the background liver.  相似文献   

11.

Purpose

To evaluate the semiquantitative DCE and quantitative DWI parameters in endometrial cancer, in order to assess the presence of neoplastic tissue and normal myometrium and to ascertain a potential relationship with tumor grade.

Methods and materials

A total of 57 patients with biopsy-proven endometrial adenocarcinoma who underwent MR imaging examination for staging purposes were retrospectively evaluated. Imaging protocol included multiplanar T1- and T2-weighted TSE, DCE T1-weighted (THRIVE; 0, 30, 90 and 120 seconds after intravenous injection of gadolinium) and DWIBS sequences (b values = 0 and 1000 mm2/s). Color perfusion and ADC maps were automatically generated on dedicated software. Relative enhancement (RE, %), maximum enhancement (ME, %), maximum relative enhancement (MRE, %), time to peak (TTP, s) and mean apparent diffusion coefficient (ADC) were calculated by manually drawing a region of interest (ROI) both on the neoplastic tissue and the normal myometrium. Histopathology was used as reference standard.

Results

Histopathological analysis confirmed the presence of endometrial carcinoma in all patients. Neoplastic tissue demonstrated significantly lower (P < 0.001) values of RE (%) 63.92 ± 35.68; ME (%) 864.91 ± 429.54 and MRE (%) 75.97 ± 38.26 as compared to normal myometrium (RE (%) 151.43 ± 55.99; ME (%) 1800.73 ± 721.32; MRE (%) 158.28 ± 54.05). TTP was significantly higher (P < 0.05) in tumor lesion (385.51 ± 1630.27 vs 195.44 ± 78.69). Mean ADC value of neoplastic tissue (775.09 ± ?220.73 × 10− 3 mm2/s) was significantly lower (P < 0.05) than in myometrium (1602.37 ± 378.54 × 10− 3 mm2/s). The analysis of perfusion and diffusion parameters classified according to tumor grades, showed a statistically significant difference only for RE (P = 0.043) and ME (P = 0.007).

Conclusions

Perfusion parameters and mean ADC differ significantly between endometrial cancer and normal myometrium, potentially reflecting the different microscopical features of cellularity and vascularity; however a significant relationship with tumor grade was not found in our series.  相似文献   

12.

Purpose

To assess the feasibility of full diffusional kurtosis tensor imaging (DKI) in prostate MRI in clinical routine. Histopathological correlation was achieved by targeted biopsy.

Materials and Methods

Thirty-one men were prospectively included in the study. Twenty-one were referred to our hospital with increased prostate specific antigen (PSA) values (> 4 ng/ml) and suspicion of prostate cancer. The other 10 men were volunteers without any history of prostate disease. DKI applying diffusion gradients in 20 different spatial directions with four b-values (0, 300, 600, 1000 s/mm2) was performed additionally to standard functional prostate MRI. Region of interest (ROI)-based measurements were performed in all histopathologically verified lesions of every patient, as well as in the peripheral zone, and the central gland of each volunteer.

Results

DKI showed a substantially better fit to the diffusion-weighted signal than the monoexponential apparent diffusion coefficient (ADC). Altogether, 29 lesions were biopsied in 14 different patients with the following results: Gleason score 3 + 3 = 6 (n = 1), 3 + 4 = 7 (n = 7), 4 + 3 = 7 (n = 6), 4 + 4 = 8 (n = 1), and 4 + 5 = 9 (n = 2), and prostatitis (n = 12). Values of axial (Kax) and mean kurtosis (Kmean) were significantly different in the tumor (Kax 1.78 ± 0.39, Kmean 1.84 ± 0.43) compared with the normal peripheral zone (Kax 1.09 ± 0.12, Kmean 1.16 ± 0.13; p < 0.001) or the central gland (Kax 1.40 ± 0.12, Kmean 1.44 ± 0.17; p = 0.01 respectively). There was a minor correlation between axial kurtosis (r = 0.19) and the Gleason score.

Conclusion

Full DKI is feasible to utilize in a routine clinical setting. Although there is some overlap some DKI parameters can significantly distinguish prostate cancer from the central gland or the normal peripheral zone. Nevertheless, the additional value of DKI compared with conventional monoexponential ADC calculation remains questionable and requires further research.  相似文献   

13.

Purpose

This study aimed to further investigate the effects of agmatine on brain edema in the rats with middle cerebral artery occlusion (MCAO) injury using magnetic resonance imaging (MRI) monitoring and biochemical and histopathologic evaluation.

Materials and methods

Following surgical induction of MCAO for 90 min, agmatine was injected 5 min after beginning of reperfusion and again once daily for the next 3 post-operative days. The events during ischemia and reperfusion were investigated by T2-weighted images (T2WI), serial diffusion-weighted images (DWI), calculated apparent diffusion coefficient (ADC) maps and contrast-enhanced T1-weighted images (CE-T1WI) during 3 h–72 h in a 1.5 T Siemens MAGNETON Avanto Scanner. Lesion volumes were analyzed in a blinded and randomized manner. Triphenyltetrazolium chloride (TTC), Nissl, and Evans Blue stainings were performed at the corresponding sections.

Results

Increased lesion volumes derived from T2WI, DWI, ADC, CE-T1WI, and TTC all were noted at 3 h and peaked at 24 h–48 h after MCAO injury. TTC-derived infarct volumes were not significantly different from the T2WI, DWI-, and CE-T1WI-derived lesion volumes at the last imaging time (72 h) point except for significantly smaller ADC lesions in the MCAO model (P < 0.05). Volumetric calculation based on TTC-derived infarct also correlated significantly stronger to volumetric calculation based on last imaging time point derived on T2WI, DWI or CE-T1WI than ADC (P < 0.05). At the last imaging time point, a significant increase in Evans Blue extravasation and a significant decrease in Nissl-positive cells numbers were noted in the vehicle-treated MCAO injured animals. The lesion volumes derived from T2WI, DWI, CE-T1WI, and Evans blue extravasation as well as the reduced numbers of Nissl-positive cells were all significantly attenuated in the agmatine-treated rats compared with the control ischemia rats (P < 0.05).

Conclusion

Our results suggest that agmatine has neuroprotective effects against brain edema on a reperfusion model after transient cerebral ischemia.  相似文献   

14.

Introduction

Diffusion tensor imaging (DTI) reveals white matter pathology in patients with multiple sclerosis (MS). A recent non-Gaussian diffusion imaging technique, q-space imaging (QSI), may provide several advantages over conventional MRI techniques in regard to in vivo evaluation of the disease process in patients with MS. The purpose of this study is to investigate the use of root mean square displacement (RMSD) derived from QSI data to characterize plaques, periplaque white matter (PWM), and normal-appearing white matter (NAWM) in patients with MS.

Methods

We generated apparent diffusion coefficient (ADC) and fractional anisotropy (FA) maps by using conventional DTI data from 21 MS patients; we generated RMSD maps by using QSI data from these patients. We used the Steel–Dwass test to compare the diffusion metrics of regions of interest in plaques, PWM, and NAWM.

Results

ADC differed (P < 0.05) between plaques and PWM and between plaques and NAWM. FA differed (P < 0.05) between plaques and NAWM. RMSD differed (P < 0.05) between plaques and PWM, plaques and NAWM, and PWM and NAWM.

Conclusion

RMSD values from QSI may reflect microstructural changes and white-matter damage in patients with MS with higher sensitivity than do conventional ADC and FA values.  相似文献   

15.

Purpose

Here we describe our first experience with contrast-enhanced (CE) MRI of breast cancer at 7 tesla (T), compared to 3 T and histopathology.

Materials and Methods

A 52 year old female patient with a mammographically suspicious breast mass (BI-RADS V) underwent 7 T CE-MRI. Results were described according to the BI-RADS-MRI criteria and compared to 3 T and histopathology.

Results

After contrast administration, a homogeneously enhancing, irregular spiculated mass was depicted at both 3 T and 7 T; sizes were identical. The most malignant kinetic curve was characterized by a rapid initial rise followed by a wash-out pattern in the delayed phase, i.e. a type 3 curve, at both field strengths. Even though T1-effects of contrast agents are suggested to be reduced at higher fields, quantification of contrast enhancement-to-noise ratio showed a ratio of 4.6 at 7 T and 2.8 at 3 T when comparing contrast-to-noise of the mass before and after contrast administration. Both examinations, using a single dose of gadolinium-based contrast agent, achieved good image quality. Final histopathological evaluation showed an invasive ductulolobular carcinoma with an intraductal component.

Conclusion

This initial experience suggests that clinical contrast-enhanced 7 T MRI of the breast is technically feasible and may allow BI-RADS-conform analysis.  相似文献   

16.

Purpose

To retrospectively identify apparent diffusion coefficient (ADC) values of pediatric abdominal mass lesions, to determine whether measured ADC of the lesions and signal intensity on diffusion-weighted (DW) images allow discrimination between benign and malignant mass lesions.

Materials and Methods

Approval for this retrospective study was obtained from the institutional review board. Children with abdominal mass lesions, who were examined by DW magnetic resonance imaging (MRI) were included in this study. DW MR images were obtained in the axial plane by using a non breath-hold single-shot spin-echo sequence on a 1.5-T MR scanner. ADCs were calculated for each lesion. ADC values were compared with Mann–Whitney U test. Receiver operating characteristic curve analysis was performed to determine cut-off values for ADC. The results of visual assessment on b800 images and ADC map images were compared with chi-square test.

Results

Thirty-one abdominal mass lesions (16 benign, 15 malignant) in 26 patients (15 girls, 11 boys, ranging from 2 days to 17 years with 6.9 years mean) underwent MRI. Benign lesions had significantly higher ADC values than malignant ones (P<.001). The mean ADCs of malignant lesions were 0.84±1.7×10−3 mm2/s, while the mean ADCs of the benign ones were 2.28±1.00×10−3 mm2/s. With respect to cutoff values of ADC: 1.11×10−3 mm2/s, sensitivity and negative predictive values were 100%, specificity was 78.6% and positive predictive value was 83.3%. For b800 and ADC map images, there were statistically significant differences on visual assessment. All malignant lesions had variable degrees of high signal intensity whereas eight of the 16 benign ones had low signal intensities on b800 images (P<.001). On ADC map images, all malignant lesions were hypointense and most of the benign ones (n=11, 68.7%) were hyperintense (P<.001).

Conclusion

DW imaging can be used for reliable discrimination of benign and malignant pediatric abdominal mass lesions based on considerable differences in the ADC values and signal intensity changes.  相似文献   

17.

Purpose

To evaluate the non-Gaussian water diffusion properties of prostate cancer (PCa) and determine the diagnostic performance of diffusion kurtosis (DK) imaging for distinguishing PCa from benign tissues within the peripheral zone (PZ), and assessing tumor lesions with different Gleason scores.

Materials and Methods

Nineteen patients who underwent diffusion weighted (DW) magnetic resonance imaging using multiple b-values and were pathologically confirmed with PCa were enrolled in this study. Apparent diffusion coefficient (ADC) was derived using a monoexponential model, while diffusion coefficient (D) and kurtosis (K) were determined using a DK model. Differences between the ADC, D and K values of benign PZ and PCa, as well as those of tumor lesions with Gleason scores of 6, 7 and ≥ 8 were assessed. Correlations between parameters D and K in PCa were analyzed using Pearson’s correlation coefficient. ADC, D and K values were correlated with Gleason scores of 6, 7 and ≥ 8, respectively.

Results

ADC and D values were significantly (p < 0.001) lower in PCa (0.79 ± 0.14 μm2/ms and 1.56 ± 0.23 μm2/ms, respectively) compared to benign PZ (1.23 ± 0.19 μm2/ms and 2.54 ± 0.24 μm2/ms, respectively). K values were significantly (p < 0.001) greater in PCa (0.96 ± 0.20) compared to benign PZ (0.59 ± 0.08). D and K showed fewer overlapping values between benign PZ and PCa compared to ADC. There was a strong negative correlation between D and K values in PCa (Pearson correlation coefficient r = − 0.729; p < 0.001). ADC and K values differed significantly in tumor lesions with Gleason scores of 6, 7 and ≥ 8 (p < 0.001 and p = 0.001, respectively), although no significant difference was detected for D values (p = 0.325). Significant correlations were found between the ADC value and Gleason score (r = − 0.828; p < 0.001), as well as the K value and Gleason score (r = 0.729; p < 0.001).

Conclusion

DK model may add value in PCa detection and diagnosis. K potentially offers a new metric for assessment of PCa.  相似文献   

18.

Purpose

To evaluate which mathematical model (monoexponential, biexponential, statistical, kurtosis) fits best to the diffusion-weighted signal in prostate magnetic resonance imaging (MRI).

Materials and Methods

24 prostate 3-T MRI examinations of young volunteers (YV, n= 8), patients with biopsy proven prostate cancer (PC, n= 8) and an aged matched control group (AC, n= 8) were included. Diffusion-weighted imaging was performed using 11 b-values ranging from 0 to 800 s/mm2.

Results

Monoexponential apparent diffusion coefficient (ADC) values were significantly (P<.001) lower in the peripheral (PZ) zone (1.18±0.16 mm2/s) and the central (CZ) zone (0.73±0.13 mm2/s) of YV compared to AC (PZ 1.92±0.17 mm2/s; CZ 1.35±0.21 mm2/s). In PC ADCmono values (0.61±0.06 mm2/s) were significantly (P<.001) lower than in the peripheral of central zone of AC. Using the statistical analysis (Akaike information criteria) in YV most pixels were best described by the biexponential model (82%), the statistical model, respectively kurtosis (93%) each compared to the monoexponential model. In PC the majority of pixels was best described by the monoexponential model (57%) compared to the biexponential model.

Conclusion

Although a more complex model might provide a better fitting when multiple b-values are used, the monoexponential analyses for ADC calculation in prostate MRI is sufficient to discriminate prostate cancer from normal tissue using b-values ranging from 0 to 800 s/mm2.  相似文献   

19.

Objective

To evaluate the correlation between findings from diffusion weighted imaging (DWI) and microvascular density (MVD) measurements in VX2 liver tumors after transarterial embolization ablation (TEA).

Materials and Methods

Eighteen New Zealand white rabbits were used in this study. VX2 tumor cells were implanted in livers by percutaneous puncture under computed tomography (CT) guidance. Two weeks later, all rabbits underwent conventional magnetic resonance imaging (MRI) (T1 and T2 imaging), DWI, (b = 100, 600, and 1000 s/mm2) and TEA. MRI was performed again1 week after TEA. Liver tissue was then harvested and processed for hematoxylin and eosin (H&E) staining and immunohistochemical staining for CD31to determine MVD.

Results

VX2 liver tumors were successfully established in all 18 rabbits. Optimal contrast was achieved with a b value of 600 s/mm2.The maximum pre-operative apparent diffusion coefficient (ADC)difference value was 0.28 × 10− 3 ± 0.10 × 10− 3 mm2/s, and was significantly different (P < 0.001) from the maximum postoperative ADCdifference value of 0.47 × 10− 3 ± 0.10 × 10− 3 mm2/s. However, the mean ADC value for the entire tumor was not significantly correlated with MVD (r = 0.221, P = 0.379), nor was the ADC value for the regions of viable tumor (r = − 0.044, P = 0.862). However, the maximum postoperative ADCdifference value was positively correlated with MVD(r = 0.606, F = 12.247, P = 0.003).

Conclusion

DWI is effective to evaluate the therapeutic efficacy of TEA. The maximum ADCdifference offers a promising new method to noninvasively assess tumor angiogenesis.  相似文献   

20.

Purpose

To assess the feasibility and to optimize imaging parameters of diffusion kurtosis imaging (DKI) in human kidneys.

Methods

The kidneys of ten healthy volunteers were examined on a clinical 3 T MR scanner. For DKI, respiratory triggered EPI sequences were acquired in the coronal plane (3 b-values: 0, 300, 600 s/mm2, 30 diffusion directions). A goodness of fit analysis was performed and the influence of the signal-to-noise ratio (SNR) on the DKI results was evaluated. Region-of-interest (ROI) measurements were performed to determine apparent diffusion coefficient (ADC), fractional anisotropy (FA) and mean kurtosis (MK) of the cortex and the medulla of the kidneys. Intra-observer and inter-observer reproducibility using Bland-Altman plots as well as subjective image quality of DKI were examined and ADC, FA, and MK parameters were compared.

Results

The DKI model fitted better to the experimental data (r = 0.99) with p < 0.05 than the common mono-exponential ADC model (r = 0.96).Calculation of reliable kurtosis parameters in human kidneys requires a minimum SNR of 8.31 on b = 0 s/mm2 images.Corticomedullary differentiation was possible on FA and MK maps. ADC, FA and MK revealed significant differences in medulla (ADC = 2.82 × 10− 3 mm2/s ± 0.25, FA = 0.42 ± 0. 05, MK = 0.78 ± 0.07) and cortex (ADC = 3.60 × 10− 3 mm2/s ± 0.28, FA = 0.18 ± 0.04, MK = 0.94 ± 0.07) with p < 0.001.

Conclusion

Our initial results indicate the feasibility of DKI in the human kidney presuming an adequate SNR. Future studies in patients with kidney diseases are required to determine the value of DKI for functional kidney imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号