首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
The aim of this study was to evaluate intracranial arterial stenoses and aneurysms with accelerated time-resolved three-dimensional (3D) phase-contrast MRI or 4D flow. The 4D flow technique was utilized to image four normal volunteers, two patients with intracranial stenoses and two patients with intracranial aneurysms. In order to reduce scan time, parallel imaging was combined with an acquisition strategy that eliminates the corners of k-space. In the two patients with intracranial stenoses, 4D flow velocity measurements showed that one patient had normal velocity profiles in agreement with a previous magnetic resonance angiogram (MRA), while the second showed increased velocities that indicated a less significant narrowing than suspected on a previous MRA, as confirmed by catheter angiography. This result may have prevented an invasive angiogram. In the two patients with 4-mm intracranial aneurysm, one had a stable helical flow pattern with a large jet, while the other had a temporally unstable flow pattern with a more focal jet possibly indicating that the second aneurysm may have a higher likelihood of rupture. Accelerated 4D flow provides time-resolved 3D velocity data in an 8- to 10-min scan. In the stenosis patients, the addition of 4D flow to a traditional MRA adds the velocity data provided from transcranial Doppler ultrasound (TCD) possibly allowing for more accurate grading of stenoses. In the aneurysm patients, visualization of flow patterns may help to provide prognostic information about future risk of rupture.  相似文献   

2.
A rotating phantom for the study of flow effects in MR imaging   总被引:2,自引:0,他引:2  
A common type of phantom used for the study of flow effects in MR imaging is the tube phantom, where a liquid passes through a set of tubes placed in the main magnetic field of an MR scanner. Among the disadvantages with this type of phantom are that a distribution of velocities is present in each tube, and that quantifications of flow effects using tube phantoms may be very time-consuming. In this work, we describe the design and the properties of a rotating wheel flow phantom used for quantification of the effects of flow through the imaging plane as well as in the imaging plane. The proposed phantom is constructed as a rotating gel-filled wheel, surrounded by static volumes filled with the same gel, and the evaluation of the information from rotating and static parts is made with a specially designed computer program. The phantom can be used as a plug flow phantom covering simultaneously an interchangeable velocity interval, which at present has the range −52 mm/s, +52 mm/s. It is shown that the phantom gives adequate information on the dependence of pixel content on first-order motion in MR modulus and phase images. Among the fields of application are rapid calibration of MR imaging units for flow determination using phase information, as well as testing of pulse sequence characteristics and verification of theoretical predictions concerning the flow dependence in MR images.  相似文献   

3.
Several parallel imaging techniques such as SMASH, SENSE, k-space inherited parallel acquisition (KIPA) and others use reference (calibration) scans to find the parameters required for image reconstruction. Reference data is used to estimate coil sensitivity profiles for image domain techniques such as SENSE or reconstruction coefficients for k-space domain methods such as SMASH and KIPA. Any motion between the reference and accelerated imaging scans can make the reconstruction coefficients determined from the reference scan data suboptimal, resulting in an artifactual reconstruction. This work aims at comparing the effects of motion on the performance of three parallel imaging methods: SENSE, variable-density SENSE and KIPA, which all require one or more reference scans for calibration.  相似文献   

4.

Background

Over the past two decades elective valve-sparing aortic root replacement (V-SARR) has become more common in the treatment of patients with aortic root and ascending aortic aneurysms. Currently there are little data available to predict complications in the post-operative population. The study goal was to determine if altered flow patterns in the thoracic aorta, as measured by MRI, are associated with complications after V-SARR.

Methods

Time-resolved three-dimensional phase-contrast MRI (4D flow) was used to image 12 patients with Marfan syndrome after V-SARR. The patients were followed up for an average of 5.8 years after imaging and 8.2 years after surgery. Additionally 5 volunteers were imaged for comparison. Flow profiles were visualized during peak systole using streamlines. Wall shear stress estimates and normalized flow displacement were evaluated at multiple planes in the thoracic aorta.

Results

During the follow-up period, a single patient developed a Stanford Type B aortic dissection. At initial imaging, prior to the development of the dissection, the patient had altered flow patterns, wall shear stress estimates, and increased normalized flow displacement in the thoracic aorta in comparison to the remaining V-SARR patients and volunteers.

Conclusions

This is the first follow-up study of patients after 4D flow imaging. An aortic dissection developed in one patient with altered flow patterns and hemodynamic stresses in the thoracic aorta. These results suggest that flow and altered hemodynamics may play a role in the development of post-operative intramural hematomas and dissections.  相似文献   

5.

Objective

The purpose of this study was to analyze flow patterns in the pulmonary circulation of healthy volunteers by using 4D flow magnetic resonance imaging.

Materials and Methods

The study was approved by the local ethics committee and all subjects gave written informed consent. Eighteen volunteers underwent a 4D flow scan of the whole-heart. Two patients with congenital heart disease were also included to detect possible patterns of flow abnormalities (Patient 1: corrected transposition of great arteries (TGA); Patient 2: partial anomalous pulmonary venous return and atrial septal defect). To analyze flow patterns, 2D planes were placed on the main pulmonary artery (PA), left and right PA. Flow patterns were assessed manually by two independent viewers using vector fields, streamlines and particle traces, and semi-automatically by vorticity quantification.

Results

Two counter-rotating helices were found in the main PA of volunteers. Right-handed helical flow was detected in the right PA of 15 volunteers. Analysis of the helical flow by particles traces revealed that both helices contributed mainly to the flow in the right PA. In the patient with corrected TGA helical flow was not detected. Abnormal vortical flow was visualized in the main PA of patient 2, suggesting elevated mean PA pressure.

Conclusions

Helical flow is normally present in the main PA and right PA. 4D flow is an excellent tool to evaluate noninvasively complex blood flow patterns in the pulmonary circulation. Knowledge of normal and abnormal flow patterns might help to evaluate patients with congenital heart disease adding functional information undetectable with other imaging modalities.  相似文献   

6.
Three-dimensional (3D) twisted projection imaging (TPI) trajectory has a unique advantage in sodium (23Na) imaging on clinical MRI scanners at 1.5 or 3 T, generating a high signal-to-noise ratio (SNR) with a short acquisition time (∼10 min). Parallel imaging with an array of coil elements transits SNR benefits from small coil elements to acquisition efficiency by sampling partial k-space. This study investigates the feasibility of parallel sodium imaging with emphases on SNR and acceleration benefits provided by the 3D TPI trajectory. Computer simulations were used to find available acceleration factors and noise amplification. Human head studies were performed on clinical 1.5/3-T scanners with four-element coil arrays to verify simulation outcomes. In in vivo studies, proton (1H) data, however, were acquired for concept–proof purpose. The sensitivity encoding (SENSE) method with the conjugate gradient algorithm was used to reconstruct images from accelerated TPI-SENSE data sets. Self-calibration was employed to estimate coil sensitivities. Noise amplification in TPI-SENSE was evaluated using multiple noise trials. It was found that the acceleration factor was as high as 5.53 (corresponding to acceleration number 2×3, ring-by-rotation), with a small image error of 6.9% when TPI projections were reduced in both polar (ring) and azimuthal (rotation) directions. The average noise amplification was as low as 98.7%, or 27% lower than Cartesian SENSE at that acceleration factor. The 3D nature of both TPI trajectory and coil sensitivities might be responsible for the high acceleration and low noise amplification. Consequently, TPI-SENSE may have potential advantages for parallel sodium imaging.  相似文献   

7.

Purpose

The objective of this study was to compare multiple methods for estimation of PWV from 4D flow MRI velocity data and to investigate if 4D flow MRI-based PWV estimation with piecewise linear regression modeling of travel-distance vs. travel time is sufficient to discern age-related regional differences in PWV.

Methods

4D flow MRI velocity data were acquired in 8 young and 8 older (age: 23 ± 2 vs. 58 ± 2 years old) normal volunteers. Travel-time and travel-distance were measured throughout the aorta and piecewise linear regression was used to measure global PWV in the descending aorta and regional PWV in three equally sized segments between the top of the aortic arch and the renal arteries. Six different methods for extracting travel-time were compared.

Results

Methods for estimation of travel-time that use information about the whole flow waveform systematically overestimate PWV when compared to methods restricted to the upslope-portion of the waveforms (p < 0.05). In terms of regional PWV, a significant interaction was found between age and location (p < 0.05). The age-related differences in regional PWV were greater in the proximal compared to distal descending aorta.

Conclusion

Care must be taken as different classes of methods for the estimation of travel-time produce different results. 4D flow MRI-based PWV estimation with piecewise linear regression modeling of travel-distance vs. travel time can discern age-related differences in regional PWV well in line with previously reported data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号