首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultrashort TE (UTE) sequences allow direct visualization of tissues with very short T2 relaxation times, such as tendons, ligaments, menisci, and cortical bone. In this work, theoretical calculations, simulations, and phantom studies, as well as in vivo imaging were performed to maximize signal-to-noise ratio (SNR) for slice selective RF excitation for 2D UTE sequences. The theoretical calculations and simulations were based on the Bloch equations, which lead to analytic expressions for the optimal RF pulse duration and amplitude to maximize magnetic resonance signal in the presence of rapid transverse relaxation. In steady state, it was found that the maximum signal amplitude was not obtained at the classical Ernst angle, but at an either lower or higher flip angle, depending on whether the RF pulse duration or amplitude was varied, respectively.  相似文献   

2.
This work explores slice profile effects in 2D slice-selective gradient-echo MRI of hyperpolarized nuclei. Two different sequences were investigated: a Spoiled Gradient Echo sequence with variable flip angle (SPGR-VFA) and a balanced Steady-State Free Precession (SSFP) sequence. It is shown that in SPGR-VFA the distribution of flip angles across the slice present in any realistically shaped radiofrequency (RF) pulse leads to large excess signal from the slice edges in later RF views, which results in an undesired non-constant total transverse magnetization, potentially exceeding the initial value by almost 300% for the last RF pulse. A method to reduce this unwanted effect is demonstrated, based on dynamic scaling of the slice selection gradient. SSFP sequences with small to moderate flip angles (<40°) are also shown to preserve the slice profile better than the most commonly used SPGR sequence with constant flip angle (SPGR-CFA). For higher flip angles, the slice profile in SSFP evolves in a manner similar to SPGR-CFA, with depletion of polarization in the center of the slice.  相似文献   

3.
To explain the signal behavior in 2D-TrueFISP imaging, a slice excitation profile should be considered that describes a variation of effective flip angles and magnetization phases after excitation. These parameters can be incorporated into steady-state equations to predict the final signal within a pixel. The use of steady-state equations assumes that excitation occurs instantaneously, although in reality this is a nonlinear process. In addition, often the flip angle variation within the slice excitation profile is solely considered when using steady-state equations, while TrueFISP is especially known for its sensitivity to phase variations. The purpose of this study was therefore to evaluate the precision of steady-state equations in calculating signal intensities in 2D TrueFISP imaging. To that end, steady-state slice profiles and corresponding signal intensities were calculated as function of flip angle, RF phase advance and pulse shape. More complex Bloch simulations were considered as a gold standard, which described every excitation within the sequence until steady state was reached. They were used to analyze two different methods based on steady-state equations. In addition, measurements on phantoms were done with corresponding imaging parameters. Although the Bloch simulations described the steady-state slice profile formation better than methods based on steady-state equations, the latter performed well in predicting the steady-state signal resulting from it. In certain cases the phase variation within the slice excitation profile did not even have to be taken into account.  相似文献   

4.
PurposeTo investigate possible errors in T1 and T2 quantification via MR fingerprinting with balanced steady-state free precession readout in the presence of intra-voxel phase dispersion and RF pulse profile imperfections, using computer simulations based on Bloch equations.Materials and methodsA pulse sequence with TR changing in a Perlin noise pattern and a nearly sinusoidal pattern of flip angle following an initial 180-degree inversion pulse was employed. Gaussian distributions of off-resonance frequency were assumed for intra-voxel phase dispersion effects. Slice profiles of sinc-shaped RF pulses were computed to investigate flip angle profile influences. Following identification of the best fit between the acquisition signals and those established in the dictionary based on known parameters, estimation errors were reported. In vivo experiments were performed at 3 T to examine the results.ResultsSlight intra-voxel phase dispersion with standard deviations from 1 to 3 Hz resulted in prominent T2 under-estimations, particularly at large T2 values. T1 and off-resonance frequencies were relatively unaffected. Slice profile imperfections led to under-estimations of T1, which became greater as regional off-resonance frequencies increased, but could be corrected by including slice profile effects in the dictionary. Results from brain imaging experiments in vivo agreed with the simulation results qualitatively.ConclusionMR fingerprinting using balanced SSFP readout in the presence of intra-voxel phase dispersion and imperfect slice profile leads to inaccuracies in quantitative estimations of the relaxation times.  相似文献   

5.
For samples with T1s longer than 10s, calibration of the RF probe and a measurement of T1 can be very time-consuming. A technique is proposed for use in imaging applications where one wishes to rapidly obtain information about the RF flip angle and sample T1 prior to imaging. The flip angle measurement time is less than 1s for a single scan. Prior knowledge of the RF flip angle is not required for the measurement of T1. The resulting time savings in measuring the values of flip angle and T1 are particularly significant in the case of samples with very long T1 and short T2*. An imaging extension of the technique provides RF flip angle mapping without the need for incrementing the pulse duration, i.e., RF mapping can be performed at fixed RF amplifier output.  相似文献   

6.
PurposeTo evaluate the use of the double-echo steady-state (DESS) sequence for acquiring high-resolution breast images with diffusion and T2 weighting.Materials and MethodsPhantom scans were used to verify the T2 and diffusion weighting of the DESS sequence. Image distortion was evaluated in volunteers by comparing DESS images and conventional diffusion-weighted images (DWI) to spoiled gradient-echo images. The DESS sequence was added to a standard clinical protocol, and the resulting patient images were used to evaluate overall image quality and image contrast in lesions.ResultsThe diffusion weighting of the DESS sequence can be easily modulated by changing the spoiler gradient area and flip angle. Radiologists rated DESS images as having higher resolution and less distortion than conventional DWI. Lesion-to-tissue contrast ratios are strongly correlated between DWI and DESS images (R = 0.83) and between T2-weighted fast spin-echo and DESS images (R = 0.80).ConclusionThe DESS sequence is able to acquire high-resolution 3D diffusion- and T2-weighted images in short scan times, with image quality that facilitates morphological assessment of lesions.  相似文献   

7.
The radio frequency (RF) slice profile effects on T1 and T2 estimation in magnetic resonance fingerprinting (MRF) are investigated with respect to time-bandwidth product (TBW), flip angle (FA) level and field inhomogeneities. Signal evolutions are generated incorporating the non-ideal slice selective excitation process using Bloch simulation and matched to the original dictionary with and without the non-ideal slice profile taken into account. For validation, phantom and in vivo experiments are performed at 3T. Both simulations and experiments results show that T1 and T2 error from non-ideal slice profile increases with increasing FA level, off-resonance, and low TBW values. Therefore, RF slice profile effects should be compensated for accurate determination of the MR parameters.  相似文献   

8.
Spatially selective excitation pulses have been designed to produce uniform flip angles in the presence of the RF and static field inhomogeneities typically encountered in MRI studies of the human brain at 7 T. Pulse designs are based upon non-selective, composite pulses numerically optimized for the desired performance over prescribed ranges of field inhomogeneities. The non-selective pulses are subsequently transformed into spatially selective pulses with the same field-insensitive properties through modification of the spectral composition of the individual sub-pulses which are then executed in conjunction with an oscillating gradient waveform. An in-depth analysis of the performance of these RF pulses is presented in terms of total pulse durations, slice profiles, linearity of in-slice magnetization phase, sensitivity to RF and static field variations, and signal loss due to T(2) effects. Both simulations and measurements in phantoms and in the human brain are used to evaluate pulses with nominal flip angles of 45° and 90°. Target slice thickness in all cases is 2mm. Results indicate that the described class of field-insensitive RF pulses is capable of improving flip-angle uniformity in 7 T human brain imaging. There appears to be a subset of pulses with durations ?10 ms for which non-linearities in the magnetization phase are minimal and signal loss due to T(2) decay is not prohibitive. Such pulses represent practical solutions for achieving uniform flip angles in the presence of the large field inhomogeneities common to high-field human imaging and help to better establish the performance limits of high-field imaging systems with single-channel transmission.  相似文献   

9.
Cellular and molecular MRI trafficking studies using superparamagnetic iron oxide (SPIO) have greatly improved non-invasive investigations of disease progression and drug efficacy, but thus far, these studies have largely been restricted to qualitative assessment of hypo- or hyperintense areas near SPIO. In this work, SPIO quantification using inversion recovery balanced steady-state free precession (IR-bSSFP) was demonstrated at 3 T by extracting R2 values from a monoexponential model (P. Schmitt et al., 2004). A low flip angle was shown to reduce the apparent recovery rate of the IR-bSSFP time course, thus extending the dynamic range of quantification. However, low flip angle acquisitions preclude the use of traditional methods for combining RF phase-cycled images to reduce banding artifacts arising from off-resonance due to B0 inhomogeneity. To achieve R2 quantification of SPIO, we present a new algorithm applicable to low flip angle IR-bSSFP acquisitions that is specifically designed to identify on-resonance acquisitions. We demonstrate in this work, using both theoretical and empirical methods, that the smallest estimated R2 from multiple RF phase-cycled acquisitions correspond well to the on-resonance time course. Using this novel minimum R2 algorithm, homogeneous R2 maps and linear R2 calibration curves were created up to 100 μg(Fe)/mL with 20° flip angles, despite substantial B0 inhomogeneity. In addition, we have shown this technique to be feasible for pre-clinical research: the minimum R2 algorithm was resistant to off-resonance in a single slice mouse R2 map, whereas maximum intensity projection resulted in banding artifacts and overestimated R2 values. With the application of recent advances in accelerated acquisitions, IR-bSSFP has the potential to quantify SPIO in vivo, thus providing important information for oncology, immunology, and regenerative medicine MRI studies.  相似文献   

10.
优化重聚脉冲提高梯度场核磁共振信号强度   总被引:1,自引:0,他引:1       下载免费PDF全文
李新  肖立志  刘化冰  张宗富  郭葆鑫  于慧俊  宗芳荣 《物理学报》2013,62(14):147602-147602
缩短射频脉冲宽度, 有助于解决脉冲电力消耗大、样品吸收率高、信噪比低等极端条件核磁共振探测的关键问题. 本文首先分析射频脉冲角度对核磁共振自旋回波信号强度的影响机理, 基于Bloch方程推导了回波信号幅度与扳转角、重聚角的关系. 在特制核磁共振分析仪上采用变脉冲角度技术, 分别在均匀磁场和梯度磁场条件下实现对扳转角和重聚角与回波信号强度关系的数值模拟和实验测量. 结果表明, 梯度场中, 扳转角为90°、重聚角为140°的射频脉冲组合获得最大首波信号强度, 比180°脉冲对应的回波幅值提高13%, 能耗降低至78%. 选用该重聚角(140°) 优化设计饱和恢复脉冲序列探测流体的纵向弛豫时间T1特性, 准确获得 T1分布.该结果对于低电力供应、且对信噪比有较高要求的核磁共振测量, 如随钻核磁共振测井和在线核磁共振快速检测等, 具有重要意义. 关键词: 核磁共振 信号强度 重聚脉冲角度 Bloch方程  相似文献   

11.
Slice-multiplexed RF pulses have recently been introduced for simultaneous multi-slice imaging. Their novel aspect is that each slice is given a different linear phase profile, and hence a different slice-rephasing requirement, by the pulse. During readout, extra slice gradients are applied such that when one slice is rephased, the others are dephased to prevent aliasing. In this paper, an improved method of designing slice-multiplexed RF pulses is presented: component pulses which are optimized with simulated annealing for a specific rephasing are combined using Shinnar-Le Roux methods. In this way, non-linearities at higher flip angles are taken into account and more slices can be excited. Bloch simulations show the phase and amplitude profile of component pulses are faithfully preserved in the multiplexed pulse. Three- and four-slice multiplex pulses are demonstrated in gradient- and spin-echo in-vivo imaging.  相似文献   

12.
利用CPMG自旋回波技术,通过一连串180°脉冲抑制辐射阻尼效应,让磁化矢量经过横向弛豫T2过程大幅度衰减后再检测回波信号的线宽,该方法可直接获得有效横向弛豫时间T*2,并可在CPMG测试T2值的同时进行. 另外,当饱和恢复法用于估计T*2值时,信号检测必须使用小角度脉冲.所有结果已进行了实验验证.  相似文献   

13.
A near-resonance expansion of the solution to the Bloch equations in the presence of a radiofrequency (RF) pulse is presented in this paper. The first-order approximation explicitly demonstrates the nonlinear nature of the Bloch equations and precisely relates the excitation profile with the RF pulse when the flip angle is less than π/2. As an application of this solution, we present a procedure for designing RF pulses to generate symmetric excitation profiles with arbitrary shapes for new encoding approaches such as wavelet encoding.  相似文献   

14.
Three techniques were considered for reducing the RF (radiofrequency) power deposition in the body while maintaining scan time efficiency: reducing the RF peak amplitude while increasing the pulse width, substituting gradient echoes for spin echoes, and reducing the flip angle of the phase reversal pulse. The use of gradient echoes was found to be the most efficient means to reduce the power delivered to the patient and to obtain rapid data acquisition. The effect upon SAR (specific absorption rate) and SNR (signal-to-noise ratio) was demonstrated on a phantom when the phase reversal pulse was reduced from the standard 180 degrees to 90 degrees. Data in the body indicated a fairly constant SNR down to a refocusing flip angle between 110 degrees and 135 degrees. An initial clinical evaluation was performed at three institutions using the method of reducing the flip angle of the phase reversal pulse. The scan with theta = 120 degrees was rated by readers in a blinded study as having acceptable diagnostic image quality while the 135 degrees scan had comparable image quality to a conventional 90 degrees - 180 degrees pulse sequence. The use of reduced phase reversal pulses was seen as an efficient protocol to obtain T1-weighted images at rapid data rates while reducing the power delivered to the body by about 40%.  相似文献   

15.
Hyperpolarized 13C offers high signal-to-noise ratios for imaging metabolic activity in vivo, but care must be taken when designing pulse sequences because the magnetization cannot be recovered once it has decayed. It has a short lifetime, on the order of minutes, and gets used up by each RF excitation. In this paper, we present a new dynamic chemical-shift imaging method that uses specialized RF pulses designed to maintain most of the hyperpolarized substrate while providing adequate SNR for the metabolic products. These are multiband, variable flip angle, spectral-spatial RF pulses that use spectral selectivity to minimally excite the injected prepolarized 13C-pyruvate substrate. The metabolic products of lactate and alanine are excited with a larger flip angle to increase SNR. This excitation was followed by an RF amplitude insensitive double spin-echo and an echo-planar flyback spectral-spatial readout gradient. In vivo results in rats and mice are presented showing improvements over constant flip angle RF pulses. The metabolic products are observable for a longer window because the low pyruvate flip angle preserves magnetization, allowing for improved observation of spatially varying metabolic reactions.  相似文献   

16.
In certain water suppression experiments, the residual water, which comes from a region away from the center of the RF coil and experiences a much smaller flip angle than the designed one, may appear. The residual water in the WET sequence can be reduced significantly by using a composite 90(x)( degrees )90(y)( degrees )90(-x)( degrees )90(-y)( degrees ) pulse, which de-excites molecules experiencing a small flip angle. The composite pulse, however, has two null excitation points near on resonance, causing a severe loss of spectrum intensity and baseline distortion toward the null points. Since the residual water experiences a very small flip angle, it can be treated as a linear spin system; i.e., the intensity of the residual water is proportional to the pulse strength and width. Based on this principle, the residual water can be reduced dramatically by replacing the 90 degrees pulse in the "270" WET sequence with a 270 degrees pulse for one out of every four scans, without noticeable loss of intensity and baseline distortion.  相似文献   

17.
The purpose of this study, is to compare the sequences: 1) proton density (PD) BLADE (BLADE is a PROPELLER-equivalent implementation of the Siemens Medical System) with fat saturation (FS) coronal (COR), 2) PD FS COR, 3) multi-planar reconstruction (MPR) with 3 mm slice thickness and 4) multi-planar reconstruction (MPR) with 1.5 mm slice thickness, both from the T2 3D-double-echo steady state (DESS) with water excitation (WE) sagittal (SAG), regarding their abilities to identify changes in the femorotibial condyle cartilage in knee MRI examinations. Thirty three consecutive patients with osteoarthritis (18 females, 15 males; mean age 56 years, range 37–71 years), who had been routinely scanned for knee examination using the previously mentioned image acquisition techniques, participated in the study. A quantitative analysis was performed based on the relative contrast (ReCON) measurements, which were taken both on normal tissues as well as on pathologies. Additionally, a qualitative analysis was performed by two radiologists. Motion and pulsatile flow artifacts were evaluated. The PD BLADE FS COR sequence produced images of higher contrast between Menisci and Cartilage, Fluid and Cartilage, Pathologies and Cartilage as well as of the Conspicuousness Superficial Cartilage and it was found to be superior to the other sequences (p < 0.001). The sequences T2 3D DESS 1.5 mm and T2 3D DESS 3 mm were significantly superior to the PD BLADE FS COR and the PD FS COR sequences in the visualization of Bone and Cartilage and the Conspicuousness Deep Surface Cartilage. This pattern of results is also confirmed by the quantitative analysis. PD FS BLADE sequences are ideal for the depiction of the cartilage pathologies compared to the conventional PD FS and T2 3D DESS sequences.  相似文献   

18.
The purpose of this communication is to describe a method for rapid and simultaneous determination of longitudinal (T1) and transversel (T2) relaxation times, based on a single continuous wave free precession (CWFP) experiment which employs RF pulses with a pi/2 flip angle. We analyze several examples, involving nuclei such as 1H, 31P, and 19F, where good agreement with T1 and T2 measurements obtained by traditional methods is apparent. We also compare with the more time-consuming steady-state free precession (SSFP) method of Kronenbitter and Schwenk where several experiments are needed to determine the optimum flip angle. The role of an inhomogeneous magnetic field on the observed decays and its effect upon the accuracy of relaxation times obtained by these methods is examined by comparing numerical simulations with experimental data. Possible sources of error and conditions to minimize its effects are described.  相似文献   

19.
A novel method for mapping the longitudinal relaxation time in a clinically acceptable time is developed based on a recent proposal [J.-J. Hsu, I.J. Lowe, Spin-lattice relaxation and a fast T1-map acquisition method in MRI with transient-state magnetization, J. Magn. Reson. 169 (2004) 270-278] and the speed of the spiral pulse sequence. The method acquires multiple curve-fitting samples with one RF pulse train. It does not require RF pulses of specific flip angles (e.g., 90 degrees or 180 degrees ), nor are the long recovery waiting time and the measurement of the magnetization at thermal equilibrium needed. Given the value of the flip angle, the curve fitting is semi-logarithmic and not computationally intensive. On a heterogeneous phantom, the average percentage difference between measurements of the present method and those of an inversion-recovery method is below 2.7%. In mapping the human brain, the present method, for example, can obtain four curve-fitting samples for five 128 x 128 slices in less than 3.2s and the results are in agreement with other studies in the literature.  相似文献   

20.
At high magnetic field, B(1)(+) non-uniformity causes undesired inhomogeneity in SNR and image contrast. Parallel RF transmission using tailored 3D k-space trajectory design has been shown to correct for this problem and produce highly uniform in-plane magnetization with good slice selection profile within a relatively short excitation duration. However, at large flip angles the excitation k-space based design method fails. Consequently, several large-flip-angle parallel transmission designs have recently been suggested. In this work, we propose and demonstrate a large-flip-angle parallel excitation design for 90 degrees and 180 degrees spin-echo slice-selective excitations that mitigate severe B(1)(+) inhomogeneity. The method was validated on an 8-channel transmit array at 7T using a water phantom with B(1)(+) inhomogeneity similar to that seen in human brain in vivo. Slice-selective excitations with parallel RF systems offer means to implement conventional high-flip excitation sequences without a severe pulse-duration penalty, even at very high B(0) field strengths where large B(1)(+) inhomogeneity is present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号