首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.

Purpose

Our aim was to characterize bi-exponential diffusion signal changes in normal appearing white matter of multiple sclerosis (MS) patients.

Methods

Diffusion parameters were measured using mono-exponential (0–1000 s/mm2) and bi-exponential (0–5000 s/mm2) approaches from 14 relapsing-remitting subtype of MS patients and 14 age- and sex-matched controls after acquiring diffusion-weighted images on a 3T MRI system. The results were analyzed using parametric or nonparametric tests and multiple linear regression models.

Results

Mono-exponential apparent diffusion coefficient (ADC) slightly increased in controls (P=.09), but decreased significantly in MS as a function of age, nonetheless an elevated ADC was observed with increasing lesion number in patients. Bi-exponential analyses showed that the increased ADC is the result of decreased relative volume fraction of slow diffusing component (fs). However, the fast and slow diffusion components (ADCf, ADCs) did not change as a function of either age in controls or lesion number and age in MS patients.

Conclusions

These data demonstrated that the myelin content of the white matter affects diffusion in relapsing-remitting subtype of multiple sclerosis that is possibly a consequence of the shift between different water fractions.  相似文献   

2.
The study was aimed to test the feasibility of utilizing an algorithmically determinable stable fiber mass (SFM) map obtained by an unsupervised principal eigenvector field segmentation (PEVFS) for automatic delineation of 18 white matter (WM) tracts: (1) corpus callosum (CC), (2) tapetum (TP), (3) inferior longitudinal fasciculus (ILF), (4) uncinate fasciculus (UNC), (5) inferior fronto-occipital fasciculus (IFO), (6) optic pathways (OP), (7) superior longitudinal fasciculus (SLF), (8) arcuate fasciculus (AF), (9) fornix (FX), (10) cingulum (CG), (11) anterior thalamic radiation (ATR), (12) superior thalamic radiation (STR), (13) posterior thalamic radiation (PTR), (14) corticospinal/corticopontine tract (CST/CPT), (15) medial lemniscus (ML), (16) superior cerebellar peduncle (SCP), (17) middle cerebellar peduncle (MCP) and (18) inferior cerebellar peduncle (ICP). Diffusion tensor imaging (DTI)-derived fractional anisotropy (FA) and the principal eigenvector field have been used to create the SFM consisting of a collection of linear voxel structures which are grouped together by color-coding them into seven natural classes to provide PEVFS signature segments which greatly facilitate the selection of regions of interest (ROIs) for fiber tractography using just a single mouse click, as compared with a manual drawing of ROIs in the classical approach. All the 18 fiber bundles have been successfully reconstructed, in all the subjects, using the single ROIs provided by the SFM approach, with their reproducibility characterized by the fact that the ROI selection is user independent. The essentially automatic PEVFS method is robust, efficient and compares favorably with the classical ROI methods for diffusion tensor tractography (DTT).  相似文献   

3.
Diffusion spectrum imaging (DSI) is capable of resolving crossing and touching fiber bundles in a given voxel. Acquisition of DSI data involves sampling large number of points in the q-space which significantly increases scan times. The scan times can be reduced by exploiting the symmetry of the q-space. In this study the fiber pathways for five (fornix, cingulum, superior longitudinal fasciculus, corticospinal tract, and crossing fibers in the centrum semiovale region) fiber bundles derived using three subsampled data sets of different sizes derived from the 257 samples in the q-space are compared. The coefficient of variation of the ratio of the number of fiber pathways for each subsample data set to the original data points, averaged over all the 10 subjects, was used for quantitatively investigating the effect of subsampling on the tractography. The effect of threshold angles on tractography is also investigated. The effect of subsampling on the orientation distribution function (ODF) was quantitatively evaluated using both scalar and vector measures derived from the ODF. A streamline tractography method that improves the curvature problem and reduces the local truncation error to further improve the mapping of fiber pathways is adapted. Analysis of the fiber pathways in ten normal subjects, based on qualitative and quantitative methods, shows that the 129 and 198 q-space points provide very similar result with angle of threshold between 41° and 45°. Based on the scan time advantage, 129 subsampled points appear to be adequate for tractography.  相似文献   

4.
Diffusion tensor imaging (DTI) was used to investigate the involvement of brain white matter in Williams syndrome (WS), a genetic neurodevelopmental disorder. Whole-brain DTIs were obtained from 16 young adults with WS and 16 normal controls. A voxel-based analysis was performed to compare fractional anisotropy (FA) values between the two groups. A tract-based analysis was also performed to compare FA values between the two groups along two major white matter tracts that pass through the external capsule: the uncinate and inferior fronto-occipital fasciculi. Several regions of both increased and decreased FA were found within major white matter tracts that connect functional regions that have previously been implicated in the cognitive and neurological symptoms of the syndrome. The tract-based analysis provided additional insight into the involvement of specific white matter tracts implicated in the voxel-based analysis within the external capsule. The results from this study support previously reported changes in white matter diffusion properties in WS and demonstrate the potential usefulness for tract-based analysis in future studies of the disorder.  相似文献   

5.

Introduction

Diffusion tensor imaging (DTI) measures in patients with multiple sclerosis (MS), particularly those measures associated with a specific white matter pathway, have consistently shown correlations with function. This study sought to investigate correlations between DTI measures in the fornix and common cognitive deficits in MS patients, including episodic memory, working memory and attention.

Materials and Methods

Patients with MS and group age- and sex-matched controls underwent high-resolution diffusion scanning (1-mm isotropic voxels) and cognitive testing. Manually drawn forniceal regions of interest were applied to individual maps of tensor-derived measures, and mean values of transverse diffusivity (TD), mean diffusivity (MD), longitudinal diffusivity (LD) and fractional anisotropy (FA) were calculated.

Results

In 40 patients with MS [mean age±S.D.= 42.55±9.1 years; Expanded Disability Status Scale (EDSS)=2.0±1.2; Multiple Sclerosis Functional Composite (MSFC) score=0.38±0.46] and 20 healthy controls (mean age±S.D.= 41.35±9.7 years; EDSS=0.0±0; MSFC score=0.74±0.24), we found that FA, MD and TD values in the fornix were significantly different between groups (P< .03), and patient performance on the Brief Visuospatial Memory Test-Revised (BVMT-R) was correlated with DTI measures (P< .03).

Discussion

These results are consistent with findings of axonal degeneration in MS and support the use of DTI as an indicator of disease progression.  相似文献   

6.
Spectroscopy techniques are valuable tools in biomedical research and have been used extensively in the study of disease. However, neurological conditions such as multiple sclerosis (MS) have received little attention and the available spectroscopy studies are limited, both in overall numbers of patients studied and the disease samples considered. MS is a complex immune-mediated disease, with variable clinical courses and limited therapeutic options. This review aims to summarize current literature in the area, demonstrating how spectroscopy techniques can provide valuable information to inform and advance research into the most common neurological condition affecting young adults.  相似文献   

7.
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is the most common cause of dementia in aging populations. Although senile plaques and neurofibrillary tangles are well-established hallmarks of AD, changes in cerebral white matter correlate with cognitive decline and may increase the risk of the development of dementia. We used the triple transgenic (3xTg)-AD mouse model of AD, previously used to show that white matter changes precede plaque formation, to test the hypothesis that MRI detectable changes occur in the corpus callosum, external capsule and the fornix. T2-weighted and diffusion tensor magnetic resonance imaging and histological stains were employed to assess white matter in older (11–17 months) 3xTg-AD mice and controls. We found no statistically significant changes in white matter between 3xTg-AD mice and controls, despite well-developed neurofibrillary tangles and beta amyloid immunoreactive plaques. Myelin staining was normal in affected mice. These data suggest that the 3xTg-AD mouse model does not develop MRI detectable white matter changes at the ages we examined.  相似文献   

8.
Detection of glutathione (GSH) is technically challenging at clinical field strengths of 1.5 or 3 T due to its low concentration in the human brain coupled with the fact that conventional single-echo acquisitions, typically used for magnetic resonance (MR) spectroscopy acquisitions, cannot be used to resolve GSH given its overlap with other resonances. In this study, an MR spectral editing scheme was used to generate an unobstructed detection of GSH at 7 T. This technique was used to obtain normative white (WM) and gray matter (GM) GSH concentrations over a two-dimensional region. Results indicated that GSH was significantly higher (P<.001) in GM relative to WM in normal subjects. This finding is consistent with previous radionuclide experiments and histochemical staining and validates this 7 T MR spectroscopy technique. To our knowledge, this is the first study to report normative differences in WM and GM glutathione concentrations in the human brain. Glutathione is a biomarker for oxidative status and this non-invasive in vivo measurement of GSH was used to explore its sensitivity to oxidative state in multiple sclerosis (MS) patients. There was a significant reduction (P<.001) of GSH between the GM in MS patients and normal controls. No statistically significant GSH differences were found between the WM in controls and MS patients. Reduced GSH was also observed in a MS WM lesion. This preliminary investigation demonstrates the potential of this marker to probe oxidative state in MS.  相似文献   

9.

Background and Purpose

The widespread propagation of synchronized neuronal firing in seizure disorders may affect cortical and subcortical brain regions. Diffusion tensor imaging (DTI) can noninvasively quantify white matter integrity. The purpose of this study was to investigate the abnormal changes of white matter in children and adolescents with focal temporal lobe epilepsy (TLE) using DTI.

Materials and Methods

Eight patients with clinically diagnosed TLE and eight age- and sex-matched healthy controls were studied. DTI images were obtained with a 3-T magnetic resonance imaging scanner. The epileptic foci were localized with magnetoencephalography. Fractional anisotropy (FA), mean diffusivity (MD), parallel (λ||) and perpendicular (λ) diffusivities in the genu of the corpus callosum, splenium of the corpus callosum (SCC), external capsule (EC), anterior limbs of the internal capsule (AIC), and the posterior limbs of the internal capsule (PIC) were calculated. The DTI parameters between patients and controls were statistically compared. Correlations of these DTI parameters of each selected structure with age of seizure onset and duration of epilepsy were analysed.

Results

In comparison to controls, both patients' seizure ipsilateral and contralateral had significantly lower FA in the AIC; PIC and SCC and higher MD, λ|| and λ in the EC, AIC, PIC and SCC. The MD, λ|| and λ were significantly correlated with age of seizure onset in the EC and PIC. λ|| was significantly correlated with the duration of epilepsy in the EC and PIC.

Conclusion

The results of the present study indicate that children and adolescents with TLE had significant abnormalities in the white matter in the hemisphere with seizure foci. Furthermore, these abnormalities may extend to the other brain hemisphere. The age of seizure onset and duration of epilepsy may be important factors in determining the extent of influence of children and adolescents TLE on white matter.  相似文献   

10.
It has been previously hypothesized that the high fractional anisotropy (FA) values in leptomeningeal cortical subcortical white matter (LCSWM) regions of neonatal brain with bacterial meningitis is due to the presence of adhesion molecules in the subarachnoid space, which are responsible for adherence of inflammatory cells over the subarachnoid membrane. The aim of this study was to look for any relationship between FA values in LCSWM regions and various neuroinflammatory molecules (NMs) in cerebrospinal fluid (CSF) measured in neonates with bacterial meningitis. Diffusion tensor imaging was performed on 18 term neonates (median age, 10.5 days) having bacterial meningitis and 10 age-/sex-matched healthy controls. CSF enzyme-linked immunosorbent assay was performed to quantify NMs [soluble intracellular adhesion molecules (sICAM), tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta)]. Significantly increased FA values were observed in LCSWM regions of the patients compared to controls. A significant positive correlation was observed between FA values in LCSWM regions and NMs [sICAM (r=0.67, P=.006), TNF-alpha (r=0.69, P=.005) and IL-1beta (r=0.82, P=.000)] in CSF of these patients. No difference in FA values (P=.99) in LCSWM regions was observed between patients with sterile (0.12+/-0.02) and culture-positive CSF study (0.12+/-0.02). FA may be used as noninvasive surrogate marker of NMs in neonatal meningitis in assessing therapeutic response in future.  相似文献   

11.
The mapping of the human brain white matter fiber networks relative to deep subcortical and cortical gray matter requires high spatial resolution which is challenged by the low signal-to-noise ratio. The purpose of this short report was to introduce a whole brain high spatial resolution diffusion tensor imaging (DTI) protocol that enabled for the first time the mapping of corticopontocerebellar, frontostriatal and thalamofrontal fiber pathways in addition to other limbic, commissural, association and projection white matter pathways relative to the segmented deep gray (e.g., caudate nuclei) and the cortical lobes. Our DTI acquisition protocol and analysis strategy provide important template for brain-behavior research and for teaching brain mapping and are clinically affordable for patient comfort.  相似文献   

12.
Previous studies had explored the diagnostic and prognostic value of the structural neuroimaging data of MDD and treated the whole brain voxels, the fractional anisotropy and the structural connectivity as classification features. To our best knowledge, no study examined the potential diagnostic value of the hubs of anatomical brain networks in MDD. The purpose of the current study was to provide an exploratory examination of the potential diagnostic and prognostic values of hubs of white matter brain networks in MDD discrimination and the corresponding impaired hub pattern via a multi-pattern analysis. We constructed white matter brain networks from 29 depressions and 30 healthy controls based on diffusion tensor imaging data, calculated nodal measures and identified hubs. Using these measures as features, two types of feature architectures were established, one only included hubs (HUB) and the other contained both hubs and non hubs. The support vector machine classifiers with Gaussian radial basis kernel were used after the feature selection. Moreover, the relative contribution of the features was estimated by means of the consensus features. Our results presented that the hubs (including the bilateral dorsolateral part of superior frontal gyrus, the left middle frontal gyrus, the bilateral middle temporal gyrus, and the bilateral inferior temporal gyrus) played an important role in distinguishing the depressions from healthy controls with the best accuracy of 83.05%. Moreover, most of the HUB consensus features located in the frontal-parieto circuit. These findings provided evidence that the hubs could be served as valuable potential diagnostic measure for MDD, and the hub-concentrated lesion distribution of MDD was primarily anchored within the frontal-parieto circuit.  相似文献   

13.
Development and initial evaluation of 7-T q-ball imaging of the human brain   总被引:1,自引:0,他引:1  
Diffusion tensor imaging (DTI) noninvasively depicts white matter connectivity in regions where the Gaussian model of diffusion is valid but yields inaccurate results in those where diffusion has a more complex distribution, such as fiber crossings. q-ball imaging (QBI) overcomes this limitation of DTI by more fully characterizing the angular dependence of intravoxel diffusion with larger numbers of diffusion-encoding directional measurements at higher diffusion-weighting factors (b values). However, the former technique results in longer acquisition times and the latter technique results in a lower signal-to-noise ratio (SNR). In this project, we developed specialized 7-T acquisition methods utilizing novel radiofrequency pulses, eight-channel parallel imaging EPI and high-order shimming with a phase-sensitive multichannel B0 field map reconstruction. These methods were applied in initial healthy adult volunteer studies, which demonstrated the feasibility of performing 7-T QBI. Preliminary comparisons of 3 T with 7 T within supratentorial crossing white matter tracts documented a 79.5% SNR increase for b=3000 s/mm2 (P=.0001) and a 38.6% SNR increase for b=6000 s/mm2 (P=.015). With spherical harmonic reconstruction of the q-ball orientation distribution function at b=3000 s/mm2, 7-T QBI allowed for accurate visualization of crossing fiber tracts with fewer diffusion-encoding acquisitions as compared with 3-T QBI. The improvement of 7-T QBI at b factors as high as 6000 s/mm2 resulted in better angular resolution as compared with 3-T QBI for depicting fibers crossing at shallow angles. Although the increased susceptibility effects at 7 T caused problematic distortions near brain-air interfaces at the skull base and posterior fossa, these initial 7-T QBI studies demonstrated excellent quality in much of the supratentorial brain, with significant improvements as compared with 3-T acquisitions in the same individuals.  相似文献   

14.

Objective

Diffusion imaging techniques such as DTI and HARDI are difficult to implement in infants because of their sensitivity to subject motion. A short acquisition time is generally preferred, at the expense of spatial resolution and signal-to-noise ratio. Before estimating the local diffusion model, most pre-processing techniques only register diffusion-weighted volumes, without correcting for intra-slice artifacts due to motion or technical problems. Here, we propose a fully automated strategy, which takes advantage of a high orientation number and is based on spherical-harmonics decomposition of the diffusion signal.

Material and methods

The correction strategy is based on two successive steps: 1) automated detection and resampling of corrupted slices; 2) correction for eddy current distortions and realignment of misregistered volumes. It was tested on DTI data from adults and non-sedated healthy infants.

Results

The methodology was validated through simulated motions applied to an uncorrupted dataset and through comparisons with an unmoved reference. Second, we showed that the correction applied to an infant group enabled to improve DTI maps and to increase the reliability of DTI quantification in the immature cortico-spinal tract.

Conclusion

This automated strategy performed reliably on DTI datasets and can be applied to spherical single- and multiple-shell diffusion imaging.  相似文献   

15.

Objective

The pathological changes in Parkinson disease begin in the brainstem; reach the limbic system and ultimately spread to the cerebral cortex. In Parkinson disease (PD) patients, we evaluated the alteration of cingulate fibers, which comprise part of the limbic system, by using diffusional kurtosis imaging (DKI).

Methods

Seventeen patients with PD and 15 age-matched healthy controls underwent DKI with a 3-T MR imager. Diffusion tensor tractography images of the anterior and posterior cingulum were generated. The mean kurtosis (MK) and conventional diffusion tensor parameters measured along the images in the anterior and posterior cingulum were compared between the groups. Receiver operating characteristic (ROC) analysis was also performed to compare the diagnostic abilities of the MK and conventional diffusion tensor parameters.

Results

The MK and fractional anisotropy (FA) in the anterior cingulum were significantly lower in PD patients than in healthy controls. The area under the ROC curve was 0.912 for MK and 0.747 for FA in the anterior cingulum. MK in the anterior cingulum had the best diagnostic performance (mean cutoff, 0.967; sensitivity, 0.87; specificity, 0.94).

Conclusions

DKI can detect alterations of the anterior cingulum in PD patients more sensitively than can conventional diffusion tensor imaging. Use of DKI can be expected to improve the ability to diagnose PD.  相似文献   

16.
The hemispheres of the human brain are functionally and structurally asymmetric. The purpose of this study was to evaluate the effects of aging on gray and white matter asymmetry. Two hundred twenty-six right-handed normal volunteers aged 21–71 years were included in this study. The effects of aging on gray matter volume asymmetry and white matter fractional anisotropy asymmetry were evaluated with use of voxel-based morphometry and voxel-based analysis of fractional anisotropy maps derived from diffusion tensor imaging (DTI), respectively. The voxel-based morphometry showed no significant correlation between age and gray matter volume asymmetry. The voxel-based analysis of DTI also showed no significant correlation between age and white matter fractional anisotropy asymmetry. Our results showed no significant effects of aging on either gray matter volume asymmetry or white matter fractional anisotropy asymmetry.  相似文献   

17.
An evaluative methodology and five accompanying performance measures were developed to quantitatively assess the performance of the skeleton projection algorithm constituting the heart of tract-based spatial statistics (TBSS). The performance measures were designed to quantify the accuracy of skeleton projection in its indented task of alleviating any residual misalignment that may remain after image registration. A ground truth fractional anisotropy (FA) image was slightly warped using a realistic warp field that served to model post-registration residual misalignment of varying magnitudes. Skeleton projection was then used to register the warped FA image to the ground truth. Performing skeleton projection was found to yield up to 50% better correspondence between the values of FA compared to smoothing, despite the fact that less than 10% of post-registration misalignment was corrected. The align-max-with-max strategy underlying TBSS was posited as a potential explanation for this high correspondence in the values of FA, at the expense of lesser alignment between anatomically concordant voxels.  相似文献   

18.
ZNF804A, a genomewide supported susceptibility gene for schizophrenia and bipolar disorder, has been associated with task-independent functional connectivity between the left and right dorsolateral prefrontal cortices. Several lines of evidence have converged on the hypothesis that this effect may be mediated by structural connectivity. We tested this hypothesis using diffusion tensor magnetic resonance imaging in three samples: one German sample of 50 healthy individuals, one Scottish sample of 83 healthy individuals and one Scottish sample of 84 unaffected relatives of bipolar patients. Voxel-based analysis and tract-based spatial statistics did not detect any fractional anisotropy (FA) differences between minor allele carriers and individuals homozygous for the major allele at rs1344706. Similarly, region-of-interest analyses and quantitative tractography of the genu of the corpus callosum revealed no significant FA differences between the genotype groups. Examination of effect sizes and confidence intervals indicated that this negative finding is very unlikely to be due to a lack of statistical power. In summary, despite using various analysis techniques in three different samples, our results were strikingly and consistently negative. These data therefore suggest that it is unlikely that the effects of genetic variation at rs1344706 on functional connectivity are mediated by structural integrity differences in large, long-range white matter fiber connections.  相似文献   

19.

Objectives

To develop a novel statistical method for analysis of longitudinal DTI data in individual subjects.

Materials and Methods

The proposed SPatial REgression Analysis of Diffusion tensor imaging (SPREAD) method incorporates a spatial regression fitting of DTI data among neighboring voxels and a resampling method among data at different times. Both numerical simulations and real DTI data from healthy volunteers and multiple sclerosis (MS) patients were used in the study to evaluate this method.

Results

Statistical inference based on SPREAD was shown to perform well through both group comparisons among simulated DTI data of individuals (especially when the group size is smaller than 5) and longitudinal comparisons of human DTI data within the same individual.

Conclusions

When pathological changes of neurodegenerative diseases are heterogeneous in a population, SPREAD provides a unique way to assess abnormality during disease progression at the individual level. Consequently, it has the potential to shed light on how the brain has changed as a result of disease or injury.  相似文献   

20.

Introduction

We investigated microstructural changes in the spinal cord, separately for white matter and gray matter, in patients with cervical spondylosis by using diffusional kurtosis imaging (DKI).

Methods

We studied 13 consecutive patients with cervical myelopathy (15 affected sides and 11 unaffected sides). After conventional magnetic resonance (MR) imaging, DKI data were acquired by using a 3 T MR imaging scanner. Values for fractional anisotropy (FA), apparent diffusion coefficient (ADC), and mean diffusional kurtosis (MK) were calculated and compared between unaffected and affected spinal cords, separately for white matter and gray matter.

Results

Tract-specific analysis of white matter in the lateral funiculus showed no statistical differences between the affected and unaffected sides. In gray matter, only MK was significantly lower in the affected spinal cords than in unaffected spinal cords (0.60 ± 0.18 vs. 0.73 ± 0.13, P = 0.0005, Wilcoxon’s signed rank test).

Conclusions

MK values in the spinal cord may reflect microstructural changes and gray matter damage and can potentially provide more information beyond that obtained with conventional diffusion metrics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号