首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 0 毫秒
1.
Ramajo  H.  Olivella  S.  Carrera  J.  Sánchez-Vila  X. 《Transport in Porous Media》2002,46(2-3):269-284
A high-level radioactive waste disposal site may lead to gas generation by different physical mechanisms. As these sites are to be located in areas with low water flow, any small amount of gas can lead to relative high gas pressures, so that multiphase flow analysis becomes relevant. The movement of gas and water through the system has two important implications. Firstly, water flow takes place in unsaturated conditions, and thus travel times of the radioactive particles transported are affected; and secondly, gas can also carry radioactive particles. Therefore, one of the key points in such studies is the time when gas would break through the biosphere under a number of different flow conditions. In fractured zones, gas would flow preferentially through the most conductive features. We consider a two-dimensional system representing an isolated fracture. In each point we assign a local porosity and permeability and a local pressure-saturation relationship. A dipole (injector-producer) gas flow system is generated and the variation in water saturation is studied. A simple method is proposed for obtaining upscaled values for several parameters involved in two-phase flow. It is based on numerical simulation on a block scale assuming steady-state conditions and absence of capillary pressure gradients. The proposed method of upscaling is applied to simulate a dipole test using a coarser grid than that of the reference field. The comparison between the results in both scales shows an encouraging agreement.  相似文献   

2.
There are contradicted opinions on whether bubbles enhance or reduce the liquid turbulence. In this paper, the effect of void fraction and inlet velocity on the bubble–liquid two-phase turbulence of the multiple bubble–liquid jets in a two-dimensional channel is studied by using the two-phase second-order moment turbulence model. The results confirm the phenomena observed in experiments and reported in references that at a low void fraction and low inlet velocities the bubbles enhance the liquid turbulence, whereas at a high void fraction and high inlet velocities the bubbles reduce the liquid turbulence.The project supported by the China Special Funds for Major State Basic Research (G-1999-0222-08) and the Innovation and Technology Commission of Hong Kong and Aoyagi (H.K.) Ltd, Hong Kong, under the Grant No. UIM/122. The English text was polished by Keren Wang.  相似文献   

3.
This paper presents some results concerning a first benchmark for the new European research code for thermal hydraulics computations: NEPTUNE_CFD. This benchmark relies on the Thorpe experiment to model the occurrence of instabilities in a stratified two-phase flow. The first part of this work is to create a numerical trial case with the VOF approach. The results, in terms of time of onset of the instability, critical wave-number or wave phase speed, are rather good compared to linear inviscid theory and experimental data. Additional numerical tests showed the effect of the surface tension and density ratio on the growing dynamics of the instability and the structure of the waves. In the second part, a code to code (VOF/multi-field) comparison is performed for a case with zero surface tension. The results showed some discrepancies in terms of wave amplitudes, growing rates and a time shifting in the global dynamics. Afterward, two surface tension formulations are proposed in the multi-field approach. Both formulations provided similar results. The time for onset of the instability, the most amplified wave-number and its amplitude were in rather good agreement with the linear analysis and VOF results. However, the time-shifted dynamics was still observed.  相似文献   

4.
Different combustion models such as PCM (Presumed Conditional Moments) or ADF-PCM (Approximated Diffusion Flames Presumed Conditional Moments) can be used for RANS simulations of non premixed or partially premixed turbulent flames. In this paper, the auto-ignition experiment performed by Mastorakos and co-workers at Cambridge University is used as a validation case for comparing these two approaches. Furthermore, the first order PCM model is introduced to analyze the effects of the progress variable segregation and an improved version of ADF-PCM is developed with a pdf of the scalar dissipation rate. Compared to ADF-PCM models, the first and second order PCM models predict very sharp temperature and progress variable increase after ignition for all simulated cases. The segregation factors of the progress variable reach important values during the ignition for ADF-PCM models whereas for PCM, high values are reached at the beginning of the ignition.  相似文献   

5.
哈密顿体系在断裂力学Dugdale模型中的应用   总被引:4,自引:1,他引:4  
利用平面扇形域哈密顿体系的方程,通过分离变量法及共轭辛本征函数向量展开法,以解析的方法推导出基于Dugdale模型的平面裂纹弹塑性解析元列式。将该解析元与有限元相结合,构成半解析的有限元法,可求解任意几何形状和荷载平板裂纹的Dugdale模型问题。数值计算结果表明本文方法对该类问题的求解是十分有效的,并有较高的精度。  相似文献   

6.
We develop a theory of statistical mechanics for dissipative systems governed by equations of evolution that assigns probabilities to individual trajectories of the system. The theory is made mathematically rigorous and leads to precise predictions regarding the behavior of dissipative systems at finite temperature. Such predictions include the effect of temperature on yield phenomena and rheological time exponents. The particular case of an ensemble of dislocations moving in a slip plane through a random array of obstacles is studied numerically in detail. The numerical results bear out the analytical predictions regarding the mean response of the system, which exhibits Andrade creep.  相似文献   

7.
In the last decade, the characterization of transport in porous media has benefited largely from numerical advances in applied mathematics and from the increasing power of computers. However, the resolution of a transport problem often remains cumbersome, mostly because of the time-dependence of the equations and the numerical stability constraints imposed by their discretization. To avoid these difficulties, another approach is proposed based on the calculation of the temporal moments of a curve of concentration versus time. The transformation into the Laplace domain of the transport equations makes it possible to develop partial derivative equations for the calculation of complete moments or truncated moments between two finite times, and for any point of a bounded domain. The temporal moment equations are stationary equations, independent of time, and with weaker constraints on their stability and diffusion errors compared to the classical advection–dispersion equation, even with simple discrete numerical schemes. Following the complete theoretical development of these equations, they are compared firstly with analytical solutions for simple cases of transport and secondly with a well-performing transport model for advective–dispersive transport in a heterogeneous medium with rate-limited mass transfer between the free water and an immobile phase. Temporal moment equations have a common parametrization with transport equations in terms of their parameters and their spatial distribution on a grid of discretization. Therefore, they can be used to replace the transport equations and thus accelerate the achievement of studies in which a large number of simulations must be carried out, such as the inverse problem conditioned with transport data or for forecasting pollution hazards.  相似文献   

8.
A new subgrid-scale (SGS) model based on partially integrated transport method (PITM) is applied to the case of a turbulent spectral non-equilibrium flow created by the mixing of two turbulence fields of differing scales: the shearless mixing layer. The method can be viewed as a continuous hybrid RANS/LES approach. In this model the SGS length scale is no longer given by the size of the discretization step, but is dynamically estimated using an additional transport equation for the dissipation rate. The results are compared to those corresponding to the classical model of Smagorinsky and to the experimental data of Veeravalli and Warhaft. A method for creating an anisotropic analytical pseudo-random field for inflow conditions is also proposed. This approach based on subgrid-scale transport modelling combined with anisotropic inlet conditions gives better results for the prediction of the shearless mixing layer.  相似文献   

9.
This paper describes the formulation of a quasi-1-D network model, referred to as the ‘bubble model’, and its application for simulating particle transport and filtration through a granular filter bed. The model comprises a series of homogeneous sites linked through bundles of cylindrical bonds that represent flow pathways through distributions of pores and pore throats. This model incorporates pore scale processes of particle sieving and infiltration are based on numerical simulations described in a companion paper. The modeling of infiltration is further refined based on detailed experimental observations and measurements of the filtration of a dilute suspension of acrylic particles through a column of glass beads reported by Yoon et al. (2005 Water Resour. Res., to appear). Their data distinguish (a) between the collection of particles on grain surfaces and at grain-to-grain contact points, and (b) between particles that are fully entrapped and those that are hindered (temporarily collected) and can later become detached. These effects are represented by two parameters that characterize the probability of attachment and are linked to the surface roughness of the grains; one that describes the minimum particle size that can be fully entrapped, and one that describes the detachment rate. These parameters can be readily calibrated from conventional measurements of effluent concentration and effluent particle size distribution. Detailed comparisons with the data reported by Yoon et al. show that the proposed bubble model is able to achieve reliable predictions of the spatial distribution of particles within the filter bed following phases of particle injection and washing.  相似文献   

10.
Temperature dependence of selected parameters was defined and illustrated. The order of sensitivity among tested model parameters (sorption coefficient, K D; diffusion coefficient, D g; vapor pressure, P; degradation rate, k; Henry’s constant, H) was k > P > K D > H > D g for 1-day simulations and k > P and K D > D g > H for 2-day simulations. The most sensitive parameter for both days was k. Mass balance errors were calculated using NRMSE (normalized root mean square error) to evaluate the level of agreement. The numerical model was applied to predict fumigant movement in the soil bed.  相似文献   

11.
对于Oldroyd-B型黏弹性流体,本文应用格子Boltzmann方法(LBM),实现了流体在二维1:3扩张流道及3:1收缩流道中流动的数值模拟,获得了黏弹性流体在扩张和收缩流道中的流场分布.结合颗粒的受力和运动规则,基于点源颗粒模型,数值分析了颗粒在扩张流和收缩流中的沉降过程和特征,讨论了颗粒相对质量和起始位置以及雷诺数Re和威森伯格数Wi对颗粒沉降特征的影响.结果表明,颗粒相对质量和起始位置以及Re对颗粒沉降轨迹和落点影响较大,而Wi的影响则较小.  相似文献   

12.
When establishing a model of fluid flow in marine modeling, a key issue is the choice between a rigid-lid approach or a free surface level model. This is not a trivial issue as it plays an important role, not only in the choice of the numerical techniques, but also in the qualitative and quantitative aspects of the numerical results. Most software use either free surface or rigid-lid hypotheses, but comparing their results is difficult, since the numerical tools used are in general, extremely different. In this work, some numerical investigations comparing rigid-lid and free surface models are presented. A numerical method using Galerkin's method, but with a new basis, is applied to solve the rigid-lid equations in a realistic domain with varying bottom. A numerical method, similar to the one already used for free surface equations (the same truncating method and precision level) is applied, where the main differences between the simulation results depend only on the model employed. In addition, a comparative simulation between rigid-lid and free surface models to study marine circulation in the bay of Calvi (Corsica) is presented, and numerical results in the non-stratified case only (fluid with constant density) are described, as no further difficulties appear in the stratified case.  相似文献   

13.
Classical plane solutions of the theory of elasticity, which are sometimes more than 100 years old, are still used today and provide a framework for the analysis of many practical problems. But, strictly speaking, these analytical solutions are only applicable to plates with vanishing thickness or infinite thickness, where the stress state could be classified as plane stress or plane strain, respectively. However, the through-the-thickness stresses that exist in a plate of given thickness have a significant impact in a number of practical applications; and these stresses are often inevitably ignored due to the lack of analytical tools. This paper presents new analytical results for crack tip opening displacement (CTOD) for the through-the-thickness crack in infinite plates with various thicknesses. These results are based on the solution for an edge dislocation in infinite plate of arbitrary thickness and an application of the distributed dislocation technique. The analytical predictions of the CTOD and the constraint factor are compared with the three-dimensional elasto-plastic finite element (FE) results. It is shown that both analytical and numerical results are in good agreement when the numerical calculations are not affected by the size of the FE mesh and by the boundaries of the FE model.  相似文献   

14.
In this study, a Scanning Electron Microscope (SEM) is used to understand the micro level aspect of the Fracture Process Zone (FPZ) in a concrete beam. It is mainly based on the preparation and analyzing samples which are considered as being a very important part of SEM (poor preparation techniques can lead to erroneous diagnosis of the concrete study). Numerically, the fracture of concrete requires the consideration of progressive damage, which is usually modeled by a constitutive law. This latest relies on numerical methods to obtain adequate solutions. It is shown herein that by using the Object Oriented Finite Element Method (OOFEM), obtained results agreed more or less with those of others researchers. On the other side, experimental results compromise those obtained by the use of the non-local isotropic damage model. It is finally proven throughout this study that the FPZ is defined by two parameters: the length and the width.  相似文献   

15.
Motivated by the aero-acoustic feedback loop phenomenon in high speed free jets and impinging jets, a thorough examination of a POD (Proper Orthogonal Decomposition)-Galerkin method to determine the average convection velocity of coherent structures in the shear layer is presented in this paper. The technique is shown to be applicable to both time resolved as well as time unresolved data, if the data set meets certain requirements. Using a detailed sensitivity analysis on a synthetic data set, a quantitative estimate on the required time resolution for the technique has been found, which can be useful for both experimental, as well as numerical studies investigating the aero-acoustic feedback loop in high speed flows. Moreover, some innovative ways to apply the technique are also demonstrated using a simulated data set, showing the effectiveness of the technique to any general problem in supersonic jets, heat transfer, combustion or other areas in fluid mechanics, where an advection process can be identified.  相似文献   

16.
Reduced order models for the dynamics of geometrically exact planar rods are derived by projecting the nonlinear equations of motion onto a subspace spanned by a set of proper orthogonal modes. These optimal modes are identified by a proper orthogonal decomposition processing of high-resolution finite element dynamics. A three-degree-of-freedom reduced system is derived to study distinct categories of motions dominated by a single POD mode. The modal analysis of the reduced system characterizes in a unique fashion for these motions, since its linear natural frequencies are near to the natural frequencies of the full-order system. For free motions characterized by a single POD mode, the eigen-vector matrix of the derived reduced system coincides with the principal POD-directions. This property reflects the existence of a normal mode of vibration, which appears to be close to a slow invariant manifold. Its shape is captured by that of the dominant POD mode. The modal analysis of the POD-based reduced order system provides a potentially valuable tool to characterize the spatio-temporal complexity of the dynamics in order to elucidate connections between proper orthogonal modes and nonlinear normal modes of vibration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号