首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Dimer model compounds of polyvinylanthracenes (1,n-di(9-anthryl)alkanes, when n=1-5) were synthesized to model the effects of distance and orientation between anthracene groups in polymeric systems. Charge transfer (CT) complexes of anthracene, 9-methylanthracene and 1,n-di(9-anthryl)alkanes with p-chloranil (p-CHL) have been investigated spectrophotometrically in dichloromethane. The colored products are measured spectrophotometrically at different wavelength depending on the electronic transition between donors and acceptor. The formation constants of the CT complexes were determined by the Benesi-Hildebrand equation. The thermodynamic parameters were calculated by Van't Hoff equation. Stochiometries of the complexes formed between donors and acceptor were defined by the Job's method of the continuous variation and found in 1:1 complexation with donor and acceptor at the maximum absorption bands.  相似文献   

2.
Charge transfer (CT) complexes of some non-steroidal anti-inflammatory drugs, naproxen and etodolac which are electron donors with some pi-acceptors, such as tetracyanoethylene (TCNE), 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ), p-chloranil (p-CHL), have been investigated spectrophotometrically in chloroform at 21 degrees C. The coloured products are measured spectrophotometrically at different wavelength depending on the electronic transition between donors and acceptors. Beer's law is obeyed and colours were produced in non-aqueous media. All complexes were stable at least 2 h except for etodolac with DDQ stable for 5 min. The equilibrium constants of the CT complexes were determined by the Benesi-Hildebrand equation. The thermodynamic parameters DeltaH, DeltaS, DeltaG degrees were calculated by Van't Hoff equation. Stochiometries of the complexes formed between donors and acceptors were defined by the Job's method of the continuous variation and found in 1:1 complexation with donor and acceptor at the maximum absorption bands in all cases.  相似文献   

3.
Series of 1,n-dicarbazolylalkanes and 1,n-di(3-methylcarbazolyl)alkanes (where n=1-5) were synthesized and the molar extinction coefficients, equilibrium constants, enthalpies, and entropies of their charge-transfer (CT) complexes with the π-acceptors p-chloranil, tetracyanoethylene, and tetracyanoquinodimethane were investigated. 1,n-Di(3-methylcarbazolyl)alkanes formed CT complexes with higher equilibrium constants, more negative enthalpies and entropies than 1,n-dicarbazolylalkanes. Vibrational spectra of CT complexes of one of the donor molecules (1,4-dicarbazolylbutane) with all three acceptors were compared.  相似文献   

4.
1,n-Di(9-ethylcarbazol-3-yl)alkanes, where n=1-5, as the dichromophoric model compounds of poly-3-vinylcarbazoles were synthesized to examine their complexation behaviors with the electron acceptors tetracyanoethylene (TCNE) and tetranitromethane (TNM). 9,9'-Diethyl-3,3'-dicarbazolyl, di(3-ethylcarbazol-9-yl)methane, and three monomeric analogues were also included for comparison. In dichloromethane solution, the dicarbazoles formed stable 1:1 electron donor-acceptor complexes with TCNE having formation enthalpies around -3.5kcal/mol. With TNM they formed more weakly bound complexes that showed little dependence on concentration and almost zero dependence on temperature changes having nearly 0kcal/mol enthalpies of formation. The smaller gap between the two carbazole groups in 1,n-di(9-ethylcarbazol-3-yl)alkanes with nor=3.  相似文献   

5.
The complexation of electron donor–acceptor complexes of 8-hydroxyquinoline (8HQ) and metadinitrobenzene (MNB) have been studied spectrophotometrically and thermodynamically in different polar solvent at room temperature. A new absorption band due to charge transfer (CT) transition is observed in the visible region. A new theoretical model has been developed which take into account the interaction between electronic subsystem of 8HQ and MNB. The results indicate the extent of charge transfer complexes (CTCs) formation to be more in less polar solvents. Stoichiometry of the complex was found to be 1:1 by straight line method and 1H NMR between donor and acceptor at the maximum absorption bands. Ionization potential (ID) and resonance energy (RN) were determined from the CT transition energy in different solvents. The formation constants of the complexes were determined in different polar solvents from which ΔG° formation of the complexes was estimated and also extinction coefficient of the charge transfer complex (CTC) was calculated. Oscillator strength, transition dipole strengths and maximum wavelength of the CTC (λCT) in various solvents and IR spectra of the CTC have also been discussed. It has been observed that all parameters described above changed with change in polarity and concentration of donor.  相似文献   

6.
Charge-transfer (CT) complexes formed between aromatic thiol donors (thiophenol (TP), benzene-1,4-dithiol (BDT), p-aminothiophenol (ATP), p-hydroxythiophenol (HTP), and p-toluenethiol (TTP)) and 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) as an acceptor were studied spectrophotometrically in dichloromethane. Addition of aromatic thiols in dichloromethane to DDQ leads to the formation of colored solutions that exhibit a very broad absorption band in the range 440-800 nm and a band in the region 300-400 nm. On the basis of the energies of LUMO and HOMO from quantum mechanical calculations, the broad band observed in the visible region was assigned to the pi*(a2) <-- pi(b1) transition and a band observed between 300 and 400 nm was assigned to the pi*(a2) <-- pi(a2) transition. The solid CT complexes of aromatic thiols and DDQ were prepared and characterized by FT-IR spectroscopy. The stoichiometry of the CT complexes was determined by Job's continuous variation method. The association constant (KCT), molar extinction coefficient (epsilon), oscillator strength (f), and transition dipole moment (micro) values were calculated from the electronic spectra. The vertical ionization potentials (ID) of the donors were calculated from their corresponding lambdaCT. Quantum mechanical (QM) calculations were performed to determine the ionization potential and the energies of the highest occupied molecular orbital (HOMO) of donors and lowest unoccupied molecular orbital (LUMO) of an acceptor.  相似文献   

7.
The mechanism of photovoltage generation in the micellar solution of nonionic surfactants incorporating thionine dye involves charge-transfer (CT) or electron donor acceptor (EDA) interaction; the dye acts as the electron acceptor and the surfactants act as the electron donors. This is well corroborated by the spectral studies of the systems. The thermodynamic and spectral properties of the complexes are presented. The photovoltage generation, the spectral shifts due to complexation, and the thermodynamic properties of the complexes are found to be well correlated.  相似文献   

8.
[70]fullerene has been shown to form 1:1 EDA complex with anthracene, naphthalene, phenanthrene, pyrene and acenaphthene in CCl4 medium. Charge transfer (CT) bands have been detected in all the cases. Isosbestic points have been observed in the cases of phenanthrene and acenaphthene complexes. Ionisation potentials of the donors and CT transition energies have been found to correlate in accordance with Mulliken equation and from this correlation the electron affinity of C70 has been found to be 2.59 eV. Enthalpies and entropies of formation of the complexes have been estimated from the formation constants of the complexes determined spectrophotometrically at three different temperatures.  相似文献   

9.
Molecular charge-transfer (CT) complexes of some oxazolone derivatives with sigma-electron acceptor iodine have been investigated spectrophotometrically in CH2Cl2 at 20 degrees C. Stability constants of the CT complexes formed were computed and discussed in terms of the donor molecular structure and solvent polarity. The thermodynamic parameters of complex formation were determined and discussed. The solid CT complexes have been synthesized and characterized. It was deduced that the complexes formed are of strong n-sigma kind.  相似文献   

10.
用放电 LIF实验装置,对CCl4/Ar混合气体放电产生CCl2自由基,再用541.52 nm激光将电子基态CCl2激励到激发态A 1B1(0,4,0)振动能级上,通过检测激发态CCl2时间分辨荧光信号,测得室温下CCl2(A 1B1)被烷烃类分子猝灭的实验结果,用我们提出的三能级模型分析处理实验数据,获得CCl2(A 1B1)态和CCl2(a 3B1)态的碰撞猝灭速率常数kA和ka值.  相似文献   

11.
The charge–transfer (CT) complex of donor antipyrine with Π‐acceptor 2,3‐dichloro‐5,6‐dicyano‐1,4‐benzoquinone (DDQ) has been investigated spectrophotometrically in different halocarbon and acetonitrile solvents. The results indicated immediate formation of an electron donor–acceptor complex (DA), which is followed by two relatively slow consecutive reactions. The pseudo–first‐order rate constants for the formation of the ionic intermediate and the final product at various temperatures were evaluated from the absorbance–time data. The activation parameters, viz. activation energy, enthalpy, entropy, and free energy of activation, were computed from temperature dependence of rate constants. The stoichiometry of the complex was found to be 1:1 by Job's method of continuous variation. The formation constants of the resulting DA complexes were determined by the Benesi–Hildebrand equation at four different temperatures. The enthalpies and entropies of the complex formation reactions have been obtained by temperature dependence of the formation constants using Van't Hoff equation. The results indicate that DDQ complexes of antipyrine in all solvents are enthalpy stabilized but entropy destabilized. Both the kinetics of the interaction and the formation constants of the complexes are dependent upon the polarity of the solvents. © 2012 Wiley Periodicals, Inc. Int J Chem Kinet 45: 81–91, 2013  相似文献   

12.
苯酚钾及对位取代苯酚钾的电离势   总被引:2,自引:0,他引:2  
在我们以前的研究工作中发现,酚类钾盐是很好的电荷给体,可以和顺丁烯二酸酐、三硝基苯以及醌类等电荷受体生成电荷转移(CT)络合物。表示分子的给电子能力的参数是分子的第一电离势(简称为电离势I_p)。对于苯酚的I_p值,近年来已有文献记载,但苯酚钾  相似文献   

13.
Molecular complexes of phenols with DDQ have been studied spectrophotometrically in the temperature range of 10–30‡C in a solvent (CHC13) of low polarity under low donor concentrations. All the complexes exhibit one CT band each in the wavelength region where acceptor and donor do not have any absorption. The complexes are inferred to be of the π2π type and have Ry configuration in which the donor molecular orbital encompasses the substituent. The ionization potentials of the donors, the stability constants and thermodynamic parameters of the complexes have been evaluated.  相似文献   

14.
Charge transfer complexes (CTC) of 5,10,15,20-tetraphenylporphyrin (TPP), 5,10,15,20-tetra(4-tolyl)porphyrin (TTP), 5,10,15,20-tetra(4-methoxyphenyl)porphyrin (TMP), Zn-5,10,15,20-tetraphenylporphyrin (Zn-TPP), and Zn-5,10,15,20-tetra(4-tolyl)porphyrin (Zn-TTP) with tetracyanoethylene (TCNE) have been studied at various temperatures in CH(2)Cl(2) and CCl(4). The data are discussed in terms of equilibrium constant (K(CT)), molar extinction coefficient (varepsilon(CT)), thermodynamic standard reaction quantities (DeltaG degrees , DeltaH degrees and DeltaS degrees ), oscillator strength (f), and transition dipole moment (mu). The spectrum obtained for TPP/TCNE, TTP/TCNE, and TMP/TCNE systems shows two main absorption bands at 475 and 690nm, which are not due to the absorption of any of the reactants. These bands are characteristic of an intermolecular charge transfer involving the overlap of the lowest unoccupied molecular orbital (LUMO) of the acceptor with the highest occupied molecular orbital (HOMO) of the donor. The results reveal that the interaction between the donors and acceptor is due to pi-pi(*) transitions by the formation of radical ion pairs. The stoichiometry of the complexes was found to be 1:1 ratio by the Job and straight line methods between donors and acceptor with the maximum absorption bands at wavelengths of 475 and 690nm. The observed data show salvation effects on the spectral and thermodynamics properties of CTC. The ionization potential of the donors and the dissociation energy of the CTC were also determined and are found to be constant.  相似文献   

15.
Single crystals of charge-transfer (CT) complexes between tetracyanobenzene as acceptor and different aromatic donors were doped with guest donors. The molecular arrangements of the guest CT complexes forming triple energy traps in the host crystal were determined from the triplet ESR spectra of the traps. A method for the determination of relative charge-transfer triplet energies is proposed. Extended electron delocalization over more than one donor-acceptor pair has been found.  相似文献   

16.
The reactivities of polymers in exciplexes and CT complex formation were compared with those of model compounds for the following systems in solution: (1) exciplexes between excited diethylaniline as donor and ethylnaphthalene, acenaphthylene, poly-1-vinylnaphthalene or polyacenaphthylene; (2) exciplexes between excited dicyanoanthracene as acceptor and the same aromatics as donors: (3) CT complexes between chloranil and either poly-1-vinylnaphthalene or polyacenaphthylene. The rate constant for exciplex formation was found to be much larger for the model than for the polymer when diethylaniline is the donor and poly-1-vinylnaphthalene or ethylnaphthalene the acceptor. The equilibrium constant for CT complex formation between chloranil and the same aromatics is also higher in the case of model compounds. This difference is tentatively assigned to entropy terms arising from the lower accessibility of the aromatic groups fixed on a polymer backbone. These conclusions are extended to the other systems. Exciplexes do not form in poly-1-vinylnaphthalene or polyacenaphthylene films containing dicyanoanthracene.  相似文献   

17.
The influence of localized excited (LE) states on the spectroscopy of charge transfer (CT) complexes has been examined for a series of complexes formed between methyl-substituted benzene donors and 1,2,4,5-tetracyanobenzene as acceptor in 1,2-dichloroethane and octanenitrile solvents. A molecular orbital model was used to describe the appearance of multiple CT absorption bands that occur in the spectra of these complexes. The influence of LE states in these CT absorptions was explored using time-resolved linear dichroism spectroscopy where the direction of the CT transition moment vector (TMV) was used to probe the magnitude of intensity borrowing. The TMV directions for each of the observed CT transitions within the absorption spectra were determined for several complexes. In some cases, the observed CT transitions were interpreted as being pure CT transitions; in others the observed transitions are influenced significantly by a LE transition. The correlation between the TMV directions and the transition energy suggests that the magnitude of intensity borrowing is influenced not only by the energy difference between the CT and LE transitions but also by the specific character of the transitions under consideration.  相似文献   

18.
In the present study CT complexes of 2-, 3- and 4-Picolines with (DDQ) 2, 3-dichloro-5, 6-dicyano parabenzoquinone (pi-acceptor) and (I(2)) Iodine (sigma-acceptor) have been investigated spectrophotometrically in three different solvents (CCl(4), CHCl(3) and CH(2)Cl(2)) at six different temperatures. The formation constants of the CT complexes were determined by the Benesi-Hildebrand equation. The thermodynamic parameters were calculated by Van(')t Hoff equation. The DeltaH degrees , DeltaG degrees and DeltaS degrees values are all negative implying that the formation of studied complexes is exothermic in nature.  相似文献   

19.
UV–Vis, FT-IR, LC–MS and fluorescence spectral techniques were employed to investigate the mechanism of interaction of l-phenylalanine with new π-acceptors, 6-alkoxy-2,3,5-trichloro-1,4-benzoquinones. The interaction of these quinones with l-phenylalanine (LPA) yielding radical ion pair was found to proceed through the formation of donor–acceptor complex. The stoichiometry of the complexes was determined by Job’s continuous variation method and was found to be 1:1 in all the cases. Kinetic and thermodynamic properties of the complexes were determined in aqueous medium at physiological conditions (pH = 7). Fluorescence quenching studies indicated that the interaction between the donors and the acceptor is spontaneous. Correlation of association constants of the CT complexes with Taft’s polar and steric constants indicated that the electronic effects of the substitutions play a significant role in governing the reactivity of the quinones when compared to steric factors.  相似文献   

20.
The interaction between tetraethyleneglycol-bis-(8-quinolyl)ether (TEGQ) as a nitrogen and oxygen containing compound as a donor with ICl3 as an acceptor has been investigated spectrophotometrically in chloroform, acetonitrile and dimethyl sulfoxide at different temperatures. The results of mole ratio plots and continuous variation data show the stoichiometry of complexation is 2:1 ICl3/TEGQ. The formation constants of the resulting complexes and thermodynamic parameters have been determined. The results indicate the iodine trichloride complex with TEGQ is enthalpy stabilized but entropy destabilized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号