首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We present a detailed study of the energetics of water clusters (H(2)O)(n) with n ≤ 6, comparing diffusion Monte Carlo (DMC) and approximate density functional theory (DFT) with well converged coupled-cluster benchmarks. We use the many-body decomposition of the total energy to classify the errors of DMC and DFT into 1-body, 2-body and beyond-2-body components. Using both equilibrium cluster configurations and thermal ensembles of configurations, we find DMC to be uniformly much more accurate than DFT, partly because some of the approximate functionals give poor 1-body distortion energies. Even when these are corrected, DFT remains considerably less accurate than DMC. When both 1- and 2-body errors of DFT are corrected, some functionals compete in accuracy with DMC; however, other functionals remain worse, showing that they suffer from significant beyond-2-body errors. Combining the evidence presented here with the recently demonstrated high accuracy of DMC for ice structures, we suggest how DMC can now be used to provide benchmarks for larger clusters and for bulk liquid water.  相似文献   

2.
Water hexamers provide a critical testing ground for validating potential energy surface predictions because they contain structural motifs not present in smaller clusters. We tested the ability of 11 density functionals (four of which are local and seven of which are nonlocal) to accurately predict the relative energies of a series of low-lying water hexamers, relative to the CCSD(T)/aug'-cc-pVTZ level of theory, where CCSD(T) denotes coupled cluster theory with an interative treatment of single and double excitations and a quasi-perturbative treatment of connected triple excitations. Five of the density functionals were tested with two different basis sets, making a total of 16 levels of density functional theory (DFT) tested. When single-point energy calculations are carried out on geometries obtained with second-order M?ller-Plesset perturbation theory (MP2), only three density functionals, M06-L, M05-2X, and M06-2X, are able to correctly predict the relative energy ordering of the hexamers. These three functionals predict that the range of energies spanned by the six isomers is 3.2-5.6 kcal/mol, whereas the other eight functionals predict ranges of 1.0-2.4 kcal/mol; the benchmark value for this range is 3.1 kcal/mol. When the hexamers are optimized at each level of theory, all methods are able to reproduce the MP2 geometries well for all isomers except the boat and bag isomers, and DFT optimization changes the energy ordering for seven of the 16 methods tested. The addition of zero-point energy changes the energy ordering for all of the density functionals studied except for M05-2X and M06-2X. The variation in relative energies predicted by the different methods highlights the necessity for exercising caution in the choice of density functionals used in future studies. Of the 11 density functionals tested, the most accurate results for energies were obtained with the PWB6K, MPWB1K, and M05-2X functionals.  相似文献   

3.
A recently proposed new family of density functionals [S. Grimme, J. Chem. Phys. 124, 34108 (2006)] adds a fraction of nonlocal correlation as a new ingredient to density functional theory (DFT). This fractional correlation energy is calculated at the level of second-order many-body perturbation theory (PT2) and replaces some of the semilocal DFT correlation of standard hybrid DFT methods. The new "double hybrid" functionals (termed, e.g., B2-PLYP) contain only two empirical parameters that have been adjusted in thermochemical calculations on parts of the G2/3 benchmark set. The methods have provided the lowest errors ever obtained by any DFT method for the full G3 set of molecules. In this work, the applicability of the new functionals is extended to the exploration of potential energy surfaces with analytic gradients. The theory of the analytic gradient largely follows the standard theory of PT2 gradients with some additional subtleties due to the presence of the exchange-correlation terms in the self-consistent field operator. An implementation is reported for closed-shell as well as spin-unrestricted reference determinants. Furthermore, the implementation includes external point charge fields and also accommodates continuum solvation models at the level of the conductor like screening model. The density fitting resolution of the identity (RI) approximation can be applied to the evaluation of the PT2 part with large gains in computational efficiency. For systems with approximately 500-600 basis functions the evaluation of the double hybrid gradient is approximately four times more expensive than the calculation of the standard hybrid DFT gradient. Extensive test calculations are provided for main group elements and transition metal containing species. The results reveal that the B2-PLYP functional provides excellent molecular geometries that are superior compared to those from standard DFT and MP2.  相似文献   

4.
The accuracy of existing density functional methods for describing the noncovalent interaction energies in small water clusters is investigated by testing 25 density functionals against a data set of 28 water dimers and 8 water trimers whose structures are taken from the literature and from simulations. The most accurate functionals are found to be PW6B95 with a mean unsigned error of 0.13 kcal/mol and MPWB1K and B98 with mean unsigned errors of 0.15 kcal/mol; the best functional with no Hartree-Fock exchange is mPWLYP, which is a GGA with a mean unsigned error of 0.28 kcal/mol. In comparison, the most popular GGA functionals, PBE and BLYP, have mean unsigned errors of 0.52 and 1.03 kcal/mol, respectively. Since GGAs are very cost efficient for both condensed-phase simulations and electronic structure calculations on large systems, we optimized four new GGAs for water. The best of these, PBE1W and MPWLYP1W, have mean unsigned errors of 0.12 and 0.17 kcal/mol, respectively. These new functionals are well suited for use in condensed-phase simulations of water and ice.  相似文献   

5.
Fragmentation methods allow for the accurate quantum chemical (QC) treatment of large molecular clusters and materials. Here we explore the combination of two complementary approaches to the development of such fragmentation methods: the many-body expansion (MBE) on the one hand, and subsystem density-functional theory (DFT) or frozen-density embedding (FDE) theory on the other hand. First, we assess potential benefits of using FDE to account for the environment in the subsystem calculations performed within the MBE. Second, we use subsystem DFT to derive a density-based MBE, in which a many-body expansion of the electron density is used to calculate the system's total energy. This provides a correction to the energies calculated with a conventional energy-based MBE that depends only on the subsystem's electron densities. For the test case of clusters of water and of aspirin, we show that such a density-based MBE converges faster than the conventional energy-based MBE. For our test cases, truncation errors in the interaction energies are below chemical accuracy already with a two-body expansion. The density-based MBE thus provides a promising avenue for accurate QC calculation of molecular clusters and materials.  相似文献   

6.
The influence of the choice of the exchange-correlation functional (semilocal gradient corrected or hybrid functionals) on the electronic properties of metal-exchanged zeolites has been investigated for Cu- and Co-exchanged chabazite. The admixture of exact exchange in hybrid functionals increases the fundamental gap of purely siliceous chabazite, leading to better agreement with experiment and many-body perturbation theory for close-packed SiO(2) polymorphs where detailed experimental information is available. For the metal-exchanged chabazite the increased exchange splitting strongly influences the position of the cation states relative to the framework bands-in general, gradient-corrected functionals locate the occupied cation states close to the valence-band maximum of the framework, while hybrid functionals shift the occupied cation states to larger binding energies and the empty states to higher energies within the fundamental gap. The photoluminescence spectra have been analyzed using fixed-moment total-energy calculations for excited spin states in structurally relaxed and frozen geometries. The geometrical relaxation of the excited states leads to large differences in excitation and emission energies which are more pronounced in calculations using hybrid functionals. Due to the stronger relaxation effects calculated with hybrid functionals, the large differences in the electronic spectra calculated with both types of functionals are not fully reflected in the photoluminescence spectra.  相似文献   

7.
There is a number of explicit kinetic energy density functionals for noninteracting electron systems that are obtained in terms of the electron density and its derivatives. These semilocal functionals have been widely used in the literature. In this work, we present a comparative study of the kinetic energy density of these semilocal functionals, stressing the importance of the local behavior to assess the quality of the functionals. We propose a quality factor that measures the local differences between the usual orbital-based kinetic energy density distributions and the approximated ones, allowing us to ensure if the good results obtained for the total kinetic energies with these semilocal functionals are due to their correct local performance or to error cancellations. We have also included contributions coming from the Laplacian of the electron density to work with an infinite set of kinetic energy densities. For all but one of the functionals, we have found that their success in the evaluation of the total kinetic energy is due to global error cancellations, whereas the local behavior of their kinetic energy density becomes worse than that corresponding to the Thomas-Fermi functional.  相似文献   

8.
Atomic force fields for simulating copper, silver, and gold clusters and nanoparticles are developed. Potential energy functions are obtained for both monatomic and binary metallic systems using an embedded atom method. Many cluster configurations of varying size and shape are used to constrain the parametrization for each system. Binding energies for these training clusters were computed using density functional theory (DFT) with the Perdew-Wang exchange-correlation functional in the generalized gradients approximation. Extensive testing shows that the many-body potentials are able to reproduce the DFT energies for most of the structures that were included in the training set. The force fields were used to calculate surface energies, bulk structures, and thermodynamic properties. The results are in good agreement with the DFT values and consistent with the available experimental data.  相似文献   

9.
The ability of several density-functional theory (DFT) exchange-correlation functionals to describe hydrogen bonds in small water clusters (dimer to pentamer) in their global minimum energy structures is evaluated with reference to second order Moller-Plesset perturbation theory (MP2). Errors from basis set incompleteness have been minimized in both the MP2 reference data and the DFT calculations, thus enabling a consistent systematic evaluation of the true performance of the tested functionals. Among all the functionals considered, the hybrid X3LYP and PBE0 functionals offer the best performance and among the nonhybrid generalized gradient approximation functionals, mPWLYP and PBE1W perform best. The popular BLYP and B3LYP functionals consistently underbind and PBE and PW91 display rather variable performance with cluster size.  相似文献   

10.
We present a graph-theoretic approach to adaptively compute many-body approximations in an efficient manner to perform (a) accurate post-Hartree–Fock (HF) ab initio molecular dynamics (AIMD) at density functional theory (DFT) cost for medium- to large-sized molecular clusters, (b) hybrid DFT electronic structure calculations for condensed-phase simulations at the cost of pure density functionals, (c) reduced-cost on-the-fly basis extrapolation for gas-phase AIMD and condensed phase studies, and (d) accurate post-HF-level potential energy surfaces at DFT cost for quantum nuclear effects. The salient features of our approach are ONIOM-like in that (a) the full system (cluster or condensed phase) calculation is performed at a lower level of theory (pure DFT for condensed phase or hybrid DFT for molecular systems), and (b) this approximation is improved through a correction term that captures all many-body interactions up to any given order within a higher level of theory (hybrid DFT for condensed phase; CCSD or MP2 for cluster), combined through graph-theoretic methods. Specifically, a region of chemical interest is coarse-grained into a set of nodes and these nodes are then connected to form edges based on a given definition of local envelope (or threshold) of interactions. The nodes and edges together define a graph, which forms the basis for developing the many-body expansion. The methods are demonstrated through (a) ab initio dynamics studies on protonated water clusters and polypeptide fragments, (b) potential energy surface calculations on one-dimensional water chains such as those found in ion channels, and (c) conformational stabilization and lattice energy studies on homogeneous and heterogeneous surfaces of water with organic adsorbates using two-dimensional periodic boundary conditions.  相似文献   

11.
We have applied the multicoefficient density functional theory (MC‐DFT) to four recent Minnesota functionals, including M06‐2X, M08‐HX, M11, and MN12‐SX on the performance of thermochemical kinetics. The results indicated that the accuracy can be improved significantly using more than one basis set. We further included the SCS‐MP2 energies into MC‐DFT, and the resulting mean unsigned errors (MUEs) decreased by approximately 0.3 kcal/mol for the most accurate basis set combinations. The M06‐2X functional with the simple [6–311+G(d,p)/6–311+G(2d,2p)] combination gave the best performance/cost ratios for the MC‐DFT and MC‐SCS‐MP2|MC‐DFT methods with MUE of 1.58 and 1.22 kcal/mol, respectively. © 2014 Wiley Periodicals, Inc.  相似文献   

12.
The hydrogen‐bond energies of water dimer and water‐formaldehyde complexes have been studied using density functional theory (DFT). Basis sets up to aug‐cc‐pVXZ (X=D, T, Q) were used. It was found that counterpoise corrected binding energies using the aug‐cc‐pVDZ basis set are very close to those predicted with the aug‐cc‐pVQZ set. Comparative studies using various DFT functionals on these two systems show that results from B3LYP, mPW1PW91 and PW91PW91 functionals are in better agreements with those predicted using high‐level ab initio methods. These functionals were applied to the study of hydrogen bonding between guanine (G) and cytosine (C), and between adenine (A) and thy mine (T) base pairs. With the aug‐cc‐pVDZ basis set, the predicted binding energies of base pairs are in good agreement with the most elaborate ab initio results.  相似文献   

13.
The scaling of dynamical correlation energy in molecules obtained by the correlation functionals of density functional theory (DFT) is examined. The approach taken is very similar to the scaled external correlation method of Brown and Truhlar but is based on the observation that DFT correlation functionals, especially the LYP, appear to represent the dynamical portion of the correlation energy in molecules. We examine whether higher accuracy in atomization energies can be gained by scaling without significant deterioration of the structural and spectroscopic properties of the molecules using four DFT functionals (BLYP, OLYP, B3LYP, and O3LYP) on 19 molecules including the six molecule AE6 database, the latter being representative of a much larger, 109 molecule training set. We show that, with molecule specific scale factors, nearly perfect agreement with experiment can be achieved in atomization energies without increasing the average errors in other molecular properties relative to the DFT calculation. We further show that it is possible to find optimal scale factors which reduce the mean unsigned error per bond to levels comparable to those of some multilevel multicoefficient methods.  相似文献   

14.
The equilibrium structures, binding energies, vibrational harmonic frequencies, and the anharmonic corrections for two different (cyclic and asymmetric) urea dimers and for the adenine–thymine DNA base pair system have been studied using the second-order Møller–Plesset perturbation theory (MP2) method and different density functional theory (DFT) exchange–correlation (XC) functionals (BLYP, B3LYP, PBE, HCTH407, KMLYP, and BH and HLYP) with the D95V, D95V**, and D95V++** basis sets. The widely used a posteriori Boys–Bernardi or counterpoise correction scheme for basis set superposition error (BSSE) has been included in the calculations to take into account the BSSE effects during geometry optimization (on structure), on binding energies and on the different levels of approximation used for calculating the vibrational frequencies. The results obtained with the ab initio MP2 method are compared with those calculated with different DFT XC functionals; and finally the suitability of these DFT XC functionals to describe intermolecular hydrogen bonds as well as harmonic frequencies and the anharmonic corrections is assessed and discussed.  相似文献   

15.
Accurate ab initio binding energies of alkaline earth metal clusters   总被引:1,自引:0,他引:1  
The effects of basis set superposition error (BSSE) and core-correlation on the electronic binding energies of alkaline earth metal clusters Y(n) (Y = Be, Mg, Ca; n = 2-4) at the Moller-Plesset second-order perturbation theory (MP2) and the single and double coupled cluster method with perturbative triples correction (CCSD(T)) levels are examined using the correlation consistent basis sets cc-pVXZ and cc-pCVXZ (X = D, T, Q, 5). It is found that, while BSSE has a negligible effect for valence-electron-only-correlated calculations for most basis sets, its magnitude becomes more pronounced for all-electron-correlated calculations, including core electrons. By utilizing the negligible effect of BSSE on the binding energies for valence-electron-only-correlated calculations, in combination with the negligible core-correlation effect at the CCSD(T) level, accurate binding energies of these clusters up to pentamers (octamers in the case of the Be clusters) are estimated via the basis set extrapolation of ab initio CCSD(T) correlation energies of the monomer and cluster with only the cc-pVDZ and cc-pVTZ sets, using the basis set and correlation-dependent extrapolation formula recently devised. A comparison between the CCSD(T) and density functional theory (DFT) binding energies is made to identify the most appropriate DFT method for the study of these clusters.  相似文献   

16.
We have tested three pure density functional theory (DFT) functionals, BLYP, MPWPW91, MPWB95, and ten hybrid DFT functionals, B3LYP, B3P86, B98, MPW1B95, MPW1PW91, BMK, M05-2X, M06-2X, B2GP-PLYP, and DSD-BLYP with a series of commonly used basis sets on the performance of predicting the bond energies and bond distances of 31 small neutral noble-gas containing molecules. The reference structures were obtained using the CCSD(T)∕aug-cc-pVTZ theory and the reference energies were based on the calculation at the CCSD(T)∕CBS level. While in general the hybrid functionals performed significantly better than the pure functionals, our tests showed a range of performance by these hybrid functionals. For the bond energies, the MPW1B95∕6-311+G(2df,2pd), BMK∕aug-cc-pVTZ, B2GP-PLYP∕aug-cc-pVTZ, and DSD-BLYP∕aug-cc-pVTZ methods stood out with mean unsigned errors of 2.0-2.3 kcal∕mol per molecule. For the bond distances, the MPW1B95∕6-311+G(2df,2pd), MPW1PW91∕6-311+G(2df,2pd), and B3P86∕6-311+G(2df,2pd), DSD-BLYP∕6-311+G(2df,2pd), and DSD-BLYP∕aug-cc-pVTZ methods stood out with mean unsigned errors of 0.008-0.013 A? per bond. The current study showed that a careful selection of DFT functionals is very important in the study of noble-gas chemistry, and the most recommended methods are MPW1B95∕6-311+G(2df,2pd) and DSD-BLYP∕aug-cc-pVTZ.  相似文献   

17.
Multiple low-lying electronic states of M(3)O(9)(-) and M(3)O(9)(2-) (M = Mo, W) arise from the occupation of the near-degenerate low-lying virtual orbitals in the neutral clusters. We used density functional theory (DFT) and coupled cluster theory (CCSD(T)) with correlation consistent basis sets to study the structures and energetics of the electronic states of these anions. The adiabatic and vertical electron detachment energies (ADEs and VDEs) of the anionic clusters were calculated with 27 exchange-correlation functionals including one local spin density approximation functional, 13 generalized gradient approximation (GGA) functionals, and 13 hybrid GGA functionals, as well as the CCSD(T) method. For M(3)O(9)(-), CCSD(T) and nearly all of the DFT exchange-correlation functionals studied predict the (2)A(1) state arising from the Jahn-Teller distortion due to singly occupying the degenerate e' orbital to be lower in energy than the (2)A(1)' state arising from singly occupying the nondegenerate a(1)' orbital. For W(3)O(9)(-), the (2)A(1) state was predicted to have essentially the same energy as the (2)A(1)' state at the CCSD(T) level with core-valence correlation corrections included and to be higher in energy or essentially isoenergetic with most DFT methods. The calculated VDEs from the CCSD(T) method are in reasonable agreement with the experimental values for both electronic states if estimates for the corrections due to basis set incompleteness are included. For M(3)O(9)(2-), the singlet state arising from doubly occupying the nondegenerate a(1)' orbital was predicted to be the most stable state for both M = Mo and W. However, whereas M(3)O(9)(2-) was predicted to be less stable than M(3)O(9)(-), W(3)O(9)(2-) was predicted to be more stable than W(3)O(9)(-).  相似文献   

18.
We have carried out a detailed evaluation of the performance of all classes of density functional theory (DFT) for describing the potential energy surface (PES) of a wide range of nucleophilic substitution (SN2) reactions involving, amongst others, nucleophilic attack at carbon, nitrogen, silicon, and sulfur. In particular, we investigate the ability of the local density approximation (LDA), generalized gradient approximation (GGA), meta-GGA as well as hybrid DFT to reproduce high-level coupled cluster (CCSD(T)) benchmarks that are close to the basis set limit. The most accurate GGA, meta-GGA, and hybrid functionals yield mean absolute deviations of about 2 kcal/mol relative to the coupled cluster data, for reactant complexation, central barriers, overall barriers as well as reaction energies. For the three nonlocal DFT classes, the best functionals are found to be OPBE (GGA), OLAP3 (meta-GGA), and mPBE0KCIS (hybrid DFT). The popular B3LYP functional is not bad but performs significantly worse than the best GGA functionals. Furthermore, we have compared the geometries from several density functionals with the reference CCSD(T) data. The same GGA functionals that perform best for the energies (OPBE, OLYP), also perform best for the geometries with average absolute deviations in bond lengths of 0.06 A and 0.6 degrees, even better than the best meta-GGA and hybrid functionals. In view of the reduced computational effort of GGAs with respect to meta-GGAs and hybrid functionals, let alone coupled cluster, we recommend the use of accurate GGAs such as OPBE or OLYP for the study of SN2 reactions.  相似文献   

19.
"Rung 3.5" exchange-correlation functionals for Kohn-Sham density functional theory depend linearly on the nonlocal one-particle density matrix of the noninteracting Kohn-Sham reference system. Rung 3.5 functionals also require a semilocal model for the one-particle density matrix. This work presents new model density matrices for Rung 3.5 functionals. The resulting functionals give reasonable predictions for total energies, molecular thermochemistry and kinetics, odd-electron bonds, and conjugated polymer bandgaps. Global-hybrid-like combinations of semilocal and Rung 3.5 exchange, and empirical density matrix models, also show promise.  相似文献   

20.
We examine in depth the functional dependence of computed core-electron binding and excitation energies based on a total-energy difference approach within Kohn-Sham density functional theory. Twenty-seven functional combinations were studied using a database of reliable experimental data on 18 molecules. The computed core-electron binding energies are largely dependent on the choice of exchange functional. The term value of the first resonant excited state and energy differences between the lowest core-excited states are, however, quite insensitive to the choice of functionals since the errors due to the core-region cancel out. Using these results we define a different exchange functional, which mixes two functionals designed by Perdew and Wang (PD86 and PD91), with the best results for both excitation and binding energies obtained for a mixing ratio 60:40 between these. We also reexamine the relativistic corrections for inner-shell excitations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号