首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solubility of methane in water and in an aqueous growth medium for the cultivation of methanotrophs bacteria was determined over the temperature range 293.15 to 323.15 K and at atmospheric pressure. The measurements were carried out in a Ben-Naim/Baer type apparatus with a precision of about ±0.3%. The experimental results were determined using accurate thermodynamic relations. The mole fractions of the dissolved gas at the gas partial pressure of 101.325 kPa, the Henry coefficients at the water vapour pressure and the Ostwald coefficients at infinite dilution were obtained. A comparison between the solubility of methane in water and those observed in fermentation medium over the temperature range of 298.15 to 308.15 K has shown that this gas is about ±2.3% more soluble in water.The temperature dependence of the mole fractions of methane was also determined using the Clarke-Glew-Weiss equation and the thermodynamic quantities, Gibbs energy, enthalpy and entropy changes, associated with the dissolution process were calculated.Furthermore, the experimental Henry coefficients for methane in water are compared with those calculated by the scaled particle theory. The estimated Henry coefficients are about ±4% lower than the experimental ones.  相似文献   

2.
Solubility measurements of propene in water at atmospheric pressure and at thirteen temperatures in the range 293.15–323.15 K were carried out with a precision of 0.3%, using an apparatus based on the saturation method. The mole fractions, at a gas partial pressure of 101.325 kPa, were fitted to a Clarke–Glew–Weiss equation, which was used to calculate the standard molar Gibbs energy, enthalpy, and entropy changes for the process of transferring the propene molecules from the gaseous to the water phase. Solubility measurements of propene in the growth medium ofXanthobacter Py2 at 298.15, 303.15, and 308.15 K were also carried out at atmospheric pressure. These experimental data, expressed in Ostwald coefficients at the total pressure of 101.325 kPa, were about 2% lower than their water counterparts.  相似文献   

3.
A gas chromatographic headspace analysis method was used to experimentally determine gas-to-liquid partition coefficients and infinite dilution activity coefficients for 29 liquid organic solutes dissolved in triethylene glycol at 298.15 K. Solubilities were also determined at 298.15 K for 23 crystalline nonelectrolyte organic compounds in triethylene glycol based on spectroscopic absorbance measurements. The experimental results of the headspace chromatographic and spectroscopic solubility measurements were converted to gas-to-triethylene glycol and water-to-triethylene glycol partition coefficients, and molar solubility ratios using standard thermodynamic relationships. Expressions were derived for solute transfer into triethylene glycol by combining our measured experimental values with published literature data. Mathematical correlations based on the Abraham model describe the observed partition coefficient and solubility data to within 0.16 log10 units (or less).  相似文献   

4.
The solubility of coumarin in three aqueous solvent mixtures (methanol + water, ethanol + water and acetone + water) was experimentally determined by a gravimetric method at atmospheric pressure. The experimental solubility data were fitted using the modified Apelblat equation, non-random two-liquid (NRTL) equation, the combined nearly ideal binary solvent/Redlich–Kister equation and the Jouyban?Acree equation, respectively. All the equations were proven to be able to correlate the experimental data, and the modified Apelblat equation could obtain better correlation results than the other three models. The solubility of coumarin increases with increase in temperature. At the same temperature, the solubility increases with increase in mole fraction of organic solvents except for the ethanol–water system which shows a unimodal curve. In addition, the apparent thermodynamic properties of the mixing process were calculated based on the NRTL model and the experimental solubility data.  相似文献   

5.
The interactions between ionic liquids and totally fluorinated alkanes are investigated by associating gas solubility measurements with molecular simulation calculations. Experimental values for the solubility of perfluoromethane, perfluoroethane, and perfluoropropane in one ionic liquidtrihexyltetradecylphophonium bis(trifluoromethylsulfonyl)amide [P 6,6,6,14][Ntf 2]are reported between 303 and 343 K and close to atmospheric pressure. All mole fraction solubilities decrease with increasing temperature. From the variation of Henry's law constants with temperature, the thermodynamic functions of solvation were calculated. The precision of the experimental data, considered as the average absolute deviation of the Henry's law constants from appropriate smoothing equations, is always better than +/-3%. By the analysis of the differences between the solute-solvent radial distribution functions of perfluoromethane and perfluoropropane obtained by molecular simulation, it was possible to explain why solubility increases with the size of the perfluoroalkane. The trend of solubility is explained on the basis of the location of the solute with respect to the solvent ions as well as on the differences in the solute-solvent energies of interaction.  相似文献   

6.
A novel slurry reactor was used to investigate the copolymerization behavior of ethylene and 1-butene in the presence of 1 wt % Cr on Davison silica (Phillips-type) catalyst over the temperature range of 0–50°C, space velocity of about 0.0051 [m3 (STP)]/(g of catalyst) h, and a fixed ethylene to 1-butene feed mole ratio of 95 : 5. The effect of varying the ethylene to 1-butene feed ratios, 100 : 0, 96.5 : 3.5, 95 : 5, 93 : 7, 90 : 10, 80 : 20, and 0 : 100 mol/mol at 50°C was also studied. The addition of 1-butene to ethylene typically increased both copolymerization rates and yields relative to ethylene homopolymerization with the same catalyst, reaching a maximum yield for an ethylene: 1-butene feed ratio of 95 : 5 at 50°C. The incorporation of 1-butene within the copolymer in all cases was less than 5 mol %. The average activation energy for the apparent reaction rate constant, ka, based on total comonomer mole fraction in the slurry liquid for the ethylene to 1-butene feed mole ratio of 95 : 5 in the temperature range of 50–30°C measured 54.2 kJ/mol. The behavior for temperatures between 30 to 0°C differed with an activation energy of 98.2 kJ/mol; thus, some diffusion limitation likely influences the copolymerization rates at temperatures above 30°C. A kinetics analysis of the experimental data at 50°C for different ethylene to 1-butene feed ratios gave the values of the reactivity ratios, r1 = 27.3 ± 3.6 and r2 ≅ 0, for ethylene and 1-butene, respectively. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
《Fluid Phase Equilibria》2004,219(2):165-169
Experimental liquid–liquid equilibrium (LLE) data were determined for a ternary system water+acetone+2-ethyl-1-hexanol at various temperatures of 298.2, 303.2, 308.2, and 313.2 K and atmospheric pressure. The UNIQUAC model was used to correlate the experimental tie-line data. The LLE data were correlated fairly well with this solution model, indicating the reliability of the UNIQUAC equation for this ternary system. The average root mean square deviation between the observed and calculated mole fractions was 1.87%. The mutual solubility of 2-ethyl-1-hexanol and water was also investigated by the addition of acetone at different temperatures.  相似文献   

8.
A gas chromatographic headspace analysis method was used to experimentally determine gas-to-liquid partition coefficients and infinite dilution activity dilution for 14 different aliphatic and cyclic hydrocarbons (alkanes, cycloalkanes, alkenes, alkynes), eight different aromatic compounds (benzene, alkylbenzenes, halobenzenes), five different chloroalkanes (dichloromethane, trichloromethane, 1-chlorobutane, 1,2-dichloropropane, isopropylbromide), tetrahydrofuran, butyl acetate, and acetonitrile dissolved in diethylene glycol at 298.15 K. Solubilities were also measured at 298.15 K for 31 crystalline nonelectrolyte organic solutes including several polycyclic aromatic hydrocarbons and substituted benzoic acid derivatives. The experimental results of the headspace chromatographic and spectroscopic solubility measurements were converted to gas-to-diethylene glycol and water-to-diethylene glycol partition coefficients, and molar solubility ratios using standard thermodynamic relationships. Expressions were derived for solute transfer into diethylene glycol from the calculated partition coefficients and solubility ratios. Mathematical correlations based on the Abraham model describe the observed partition coefficient and solubility data to within 0.14 log10 units (or less).  相似文献   

9.
Solubility measurements were performed for bosentan (BST) in binary mixtures of propylene glycol (PG) and water at atmospheric pressure within the temperature range, T = 293.2 – 313.2 K by employing a shake-flask method. Generated solubility data were correlated with Jouyban-Acree-van’t Hoff model and the accuracies of the predicted solubilities and model performance were illustrated by mean relative deviations (MRD). Furthermore, the apparent thermodynamic properties of BST dissolving in all the mixed solvents were calculated, and the obtained results show that the dissolution process is endothermic. By using the inverse Kirkwood–Buff integrals, it was observed that BST is preferentially solvated by water in water-rich solvent mixtures and preferentially solvated by PG (as a cosolvent) in the composition range of 0.20 < x1 < 1.00 at 298.2 K.  相似文献   

10.
11.
The solubilities of gaseous argon in solutions of hexamethylenetetramine (hmta) in H2O and D2O were measured at different concentrations, at five temperatures in the range of 283–318 K, and at a partial gas pressure of 101325 Pa by microvolumetry with an accuracy of ≤0.3%. The standard Setchenov coefficients for argon solutions and the thermodynamic parameters of Ar-hmta pairwise interactions were calculated from the data on the solubility. Interactions between hydrated Ar and hmta molecules are characterized by mutual repulsions. The structural states of water in the hydration sphere of hmta and in the bulk of solution are substantially different. Due to the difference in the mechanisms of hydration of hmta and Ar, the addition of the first component leads to a decrease in the solubility of the second component. Published inIzvestiya Akademii Nauk. Seriya Khimicheskaya, No 8, pp. 1389–1394, August, 2000.  相似文献   

12.
Experimental values for the solubility of carbon dioxide, ethane, methane, oxygen, nitrogen, hydrogen, argon and carbon monoxide in 1-butyl-3-methylimidazolium tetrafluoroborate, [bmim][BF4] – a room temperature ionic liquid – are reported as a function of temperature between 283 K and 343 K and at pressures close to atmospheric. Carbon dioxide is the most soluble gas with mole fraction solubilities of the order of 10−2. Ethane and methane are one order of magnitude more soluble than the other five gases that have mole fraction solubilities of the order of 10−4. Hydrogen is the less soluble of the gaseous solutes studied. From the variation of solubility, expressed as Henry’s law constants, with temperature, the partial molar thermodynamic functions of solvation such as the standard Gibbs energy, the enthalpy, and the entropy are calculated. The precision of the experimental data, considered as the average absolute deviation of the Henry’s law constants from appropriate smoothing equations is of 1%.  相似文献   

13.
Summary The solubility of azobenzene in water and aqueous alcohol solutions was determined at 5 °C intervals from 0° to 40 °C. Prom the results the thermodynamic parameters for the transfer of one mole of azobenzene from water to aqueous alcohol solution were calculated. It was found that the process was endothermic: furthermore, it was invariably accompanied by a positive unitary entropy change. The solubilizing mechanism of alcohols was explained in terms of an adduct-formation with the compound to be dissolved by means of hydrophobic interaction.  相似文献   

14.
15.
The solubility of valsartan in ethyl acetate + (butanone, isopropyl ether) binary solvent mixtures was measured at temperatures = 278.15–323.15 K and pressure = 0.1 MPa with a laser monitoring dynamic technique by a synthetic method. The experimental data were regressed by the modified Apelblat equation, the general single model and the hybrid model. The experimental data are well correlated with the above models because the mean deviations (MDs) are less than 3.79%. The mole fraction solubility of valsartan increases with increase in temperature and enrichment in butanone content, while it decreases with increased mole fraction of isopropyl ether at constant temperature. In addition, thermodynamic studies, including Gibbs energy, entropy and enthalpy, were calculated by van’t Hoff analysis. The results showed that the dissolution of valsartan in mixed solvents is endothermic, spontaneous and entropy-driven.  相似文献   

16.
The Henry’s constants and the infinite dilution activity coefficients of propane, propene, butane, isobutane, 1-butene, isobutene, trans-2-butene and 1,3-butadiene in 1-propanol at T=(260 to 340) K are measured by a gas stripping method. The rigorous formula for evaluating the Henry’s constants from the gas stripping measurements is used for these highly volatile mixtures. The accuracy of the measurements is about 2% for Henry’s constants and 3% for the estimated infinite dilution activity coefficients. In the evaluations for the infinite dilution activity coefficients, the nonideality of solute is not negligible especially at higher temperatures and the estimated uncertainty in the infinite dilution activity coefficients include 1% for nonideality.  相似文献   

17.
18.
The Henry’s constants and the infinite dilution activity coefficients of propane, propene, butane, isobutane, 1-butene, isobutene, trans-2-butene and 1,3-butadiene in isobutanol at T = (250 to 330) K and tert-butanol at T = (300 to 330) K are measured by a gas stripping method. The rigorous formula for evaluating the Henry’s constants from the gas stripping measurements is used for data reduction of these highly volatile mixtures. The accuracy of the measurements is about 2% for Henry’s constants and 3% for the estimated infinite dilution activity coefficients. In the evaluations for the infinite dilution activity coefficients, the nonideality of the solute such as the fugacity coefficient and the Pointing correction is not negligible, especially at higher temperatures, and the estimation uncertainty in the infinite dilution activity coefficients includes 1% for nonideality.  相似文献   

19.
In this study, the solubility, density, and refractive index of glucose and lactose in water as a function of temperature were measured. For solubility of sugars in pressurized water, experimental data were obtained at pressures of (15 to 120) bar and temperatures of (373 to 433) K using a dynamic flow high pressure system. Density data for aqueous sugar solutions were obtained at pressures of (1 to 300) bar and temperatures of (298 to 343) K. The refractive index of aqueous sugar solutions was obtained at 293 K and atmospheric pressure. Activity coefficient models, Van Laar and the Conductor-like Screening Model-Segment Activity Coefficient (COSMO-SAC), were used to fit and predict the experimental solubility data, respectively. The results obtained showed that the solubility of both sugars in pressurized water increase with an increase in temperature. However, with the increase of pressure from 15 bar to 120 bar, the solubility of both sugars in pressurized water decreased. The Van Laar model fit the experimental aqueous solubility data with deviations lower than 13 and 53% for glucose and lactose, respectively. The COSMO-SAC model predicted qualitatively the aqueous solubility of these sugars.  相似文献   

20.
The solubility of oxygen, carbon dioxide, and carbon monoxide in three fluorinated liquids – perfluorohexylethane, perfluorooctane and bromoperfluorooctane – is presented. Mole fraction solubilities were calculated from new experimental Ostwald coefficient data for CO2 and CO, and from previously published values for O2, associated with original values of density and vapour pressure for the pure solvents. Carbon dioxide is the most soluble gas with mole fraction solubilities of the order of 10−2. Oxygen and carbon monoxide are one order of magnitude less soluble. The measurements were done as a function of temperature between (288 and 313) K and from the variation of the calculated Henry’s law constants with temperature, the thermodynamic properties of solvation such as the Gibbs free energy, the enthalpy and the entropy were calculated. The precision of the experimental data, considered as the average absolute deviation of the Henry’s law constants from appropriate smoothing equations is of 1% for carbon dioxide and oxygen and of 3% for carbon monoxide. The data obtained here are judged accurate to within ±5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号