首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Nd3+ doped mesoporous TiO2 samples with different molar ratio of Nd/Ti were synthesized by a sol?Cgel method. The textural and optical properties of the samples were systematical characterized by X-ray diffraction, transmission electron microscopy, N2 adsorption?Cdesorption isotherms, Fourier transform infrared spectroscopy and UV?CVisible absorbance spectroscopy. It was revealed that Nd3+ doping inhibited the phase transformation from anatase to rutile after calcination, and the mesoporous structure of doped samples was still retained with the increase of Nd/Ti molar ratio. The surface area of the samples varied from 137 to 210 m2g?1 and the average pore size of them ranged between 5.7 and 8.2?nm. The photocatalytic activities of all the samples were evaluated by degradation methyl orange (MO) in aqueous solution as a model reaction under UV light irradiation. The results showed that the doped samples demonstrated a higher photocatalytic activity than the mesoporous TiO2, and the 3?mol% Nd3+ doped mesoporous TiO2 exhibited the best photocatalytic performance. Meanwhile, a promotion effect of the H2O2 added was verified in the degradation of MO.  相似文献   

2.
Undoped, single-doped, and codoped TiO2 nanoparticles were prepared by the sol-gel method and characterized with X-ray diffraction (XRD), the Brunauer-Emmett-Teller (BET)-specific surface area (SBET), UV-Vis absorption spectra (UV-Vis), and X-ray photoelectron spectroscopy (XPS). Their photocatalytic activity was evaluated by methyl orange (MO) degradation in an aqueous suspension under UV or simulated solar light illumination. XRD showed that all samples calcined at 600°C preserved the anatase structure, and doping inhibited the increase of crystallite size. The BET result revealed that doping improved the surface area of TiO2. UV-Vis indicated that Fe3+-doping broadened the absorption profile of TiO2. XPS demonstrated that doping was advantageous to absorb more surface hydroxyl groups or chemisorbed water molecules. Photocatalytic degradation showed that the photocatalytic activity of TiO2 codoped with Fe3+ and Ho3+ ions was markedly improved. This was ascribed to the fact that there was a cooperative action in the two doped elements. Fe3+-doping broadens the absorption profile, improves photo utilization of TiO2, and then generates more electronhole pairs. Ho3+-doping restrains the increase in grain size and retards the recombination of photo-generated electrons and holes.  相似文献   

3.
Mn2+ ion was doped into the TiO2 matrix and its photocatalytic activity was evaluated for the degradation of a mono azo dye methyl orange (MO) and a di‐azo dye brilliant yellow (BY) under UV/solar light. X‐ray diffraction results revealed the phase transformation from anatase to rutile due to the inclusion of Mn2+ ion into the TiO2 matrix. All the doped catalysts showed a red shift in the band gap to the visible region. The degradation reaction of the dyes was found to be dependent on its structure. It was found that mono azo dye degrades faster than di azo dye under UV/solar light. The rate constant under identical conditions calculated for the degradation of MO is 2.4 times (under UV light) and 4.5 times (under solar light) higher compared to BY. Among the photocatalysts studied, Mn2+(0.06 at.%)‐TiO2 showed higher activity under both UV and solar light illumination. The synergestic effect in the bicrystalline framework of anatase and rutile effectively suppresses the charge carrier recombination and enhances the photocatalytic activity. The degradation reaction was followed by UV‐visible spectroscopy and the photoproducts formed were analyzed by GC‐MS techniques.  相似文献   

4.
采用水热法合成钛酸钾(K2Ti8O17)纳米棒,并将它作为前驱体水热转晶合成TiO2纳米晶,同时通过在水热体系中引入稀土元素La3+实现对TiO2的La掺杂.考察了不同条件下钛酸盐向TiO2的转晶过程,发现水热溶液的pH值、温度以及预处理步骤对转晶过程有很大的影响.利用X射线衍射以及透射电子显微镜对样品的晶相和形貌进行了表征.利用电感耦合等离子体原子发射光谱测量了所合成的La掺杂TiO2样品中的La含量.通过在紫外光下降解甲基橙(MO,10mg/L)测试了La掺杂TiO2样品的光催化性能.结果表明La掺杂后TiO2的光催化活性大大提高.在0.15mol/LLa3+浓度下180oC水热合成的La掺杂TiO2样品显示了最佳的光催化活性.其对MO的光催化降解反应常数高达0.11min-1,大约是空白TiO2样品的9.20倍,P25TiO2的3.69倍.  相似文献   

5.
In this study, a photocatalyst with visible light photocatalytic activity was obtained using raw materials, including commercial TiO2, sulfuric acid, and calcined kaolin (CK). The photocatalyst was prepared via a dissolving/impregnating process, in which acidic Ti sol was obtained by initially dissolving TiO2 particles in sulfuric acid, and then using the sol as impregnant for the CK. The prepared photocatalyst had wide spectral region and narrow band gap. In addition, the impregnation can create acid sites on the obtained composite surface and consequently improve the activity. A series of tests was performed to characterize the properties of the prepared samples. The visible light photocatalytic degradation of methyl orange (MO) in an aqueous solution was used as a probe reaction to evaluate the photocatalytic activities of the obtained samples. Under visible light irradiation, approximately 80 % of MO (with initial concentration of 20 mg/m3) was degraded in 3 h on the photocatalyst prepared by impregnating CK in acidic Ti sol, which was obtained using approximately 60 % H2SO4 solution followed by calcination at 400 °C. The acidity of the photocatalyst is the main factor that affects the catalytic activity of the photocatalytic degradation of MO.  相似文献   

6.
An environmentally-friendly aqueous sol–gel process for producing undoped and Cu2+, Ni2+, Zn2+ or Pb2+-doped TiO2 photocatalysts exhibiting a remarkably high photocatalytic activity without requiring any calcination step has been developed. The physicochemical properties of the catalysts were characterized by ICP-AES, XRD, UV–Vis spectroscopy and nitrogen adsorption–desorption. It has been found that the catalysts are composed of nanocrystallites of anatase with a size of 6–7 nm and a specific surface area varying from 184 to 275 m2 g?1. A screening of the photocatalytic activity of the undoped and doped photocatalysts has been performed by evaluating the degradation of 4-nitrophenol under artificial light (330 nm < λ < 800 nm) after 7 h of illumination using a custom-designed multisample photoreactor. The activity measured for the TiO2-Undoped catalyst was found to be five times higher than the activity measured for uncalcined TiO2 catalysts produced by other sol–gel methods. We propose that this interesting result is due to the particular morphology of the xerogels obtained. It has also been demonstrated that the presence of the dopant leads to an enhancement of the photocatalytic activity in all cases. The role of particular dopants in modulating the photocatalytic activity will be discussed. Finally, the possibility of producing undoped and Zn2+-doped films presenting a higher activity than the commercial photocatalytic coating (Saint Gobain Glass Bioclean®) without requiring any calcination step has been demonstrated. These preliminary results constitute an important step forward in the development of photocatalytic films using a sol–gel process compatible with the constraints associated with large-scale industrial processing.  相似文献   

7.
A stable metalloporphyrin sensitized TiO2 (Degussa P25) photocatalyst was prepared by using trans-dihydroxo[5,10,15,20-tetraphenylporphyrin]tin(IV) (SnP) as a sensitizer in a simple impregnation process. The solid diffuse reflectance ultraviolet-visible (UV-vis) spectrum of the SnP sensitized TiO2 photocatalyst (SnP-TiO2) indicated that there existed interaction between SnP and TiO2. It was found that SnP-TiO2 exhibited an enhanced visible light photocatalytic activity as compared with that over P25 for the degradation of 4-nitrophenol (4-NP) and methyl orange (MO) in aqueous solutions. The mechanism exploration showed that the degradation of MO and 4-NP experienced two different ways, that is, MO was photodegraded by reactive oxygen species and 4-NP was directly photodegraded by the excited state of SnP. Furthermore, it was found that the loading content of SnP had an important influence on the photocatalytic activity of TiO2. The maximum photocatalytic efficiency was achieved when the contents of SnP were 25 mg and 30 mg per gram TiO2 for MO and 4-NP, respectively. Importantly, SnP-TiO2 was particularly stable and the photocatalytic activity was hardly decreased after being recycled seven times in the presence of oxygen, which could be attributed to the easy reductive regeneration of SnP.  相似文献   

8.
采用改进的sol-gel法和浸渍法制备了TiO2掺杂稀土离子La3+、Y3+、Gd3+、Er3+、Nd3+、Pr3+的RE/TiO2光催化剂,运用FTIR、XRD、TEM、低温氮吸附/脱附、TG/DTA、UV-Vis DRS、表面光电压谱(SPS)等进行表征,以气相光催化降解乙烯、溴代甲烷作为探针反应,阐明了RE/TiO2光催化剂的谱学特性与气相光催化性能的关系。结果显示,稀土离子掺杂后,TiO2的锐钛矿含量增加,比表面积增大,粒径变小,吸收边发生蓝移,表面光电压的响应阈值增大,此外,Pr3+除外的其它稀土离子掺杂的TiO2的表面光电压信号增强;光催化降解实验表明,与纯TiO2相比,La3+、Y3+、Gd3+、Er3+、Nd3+掺杂TiO2样品上乙烯、溴代甲烷的光催化活性均有不同程度的增强,而且表现出较强的矿化能力。但是,掺杂Pr3+的TiO2的光催化性能降低恰好对应较弱的表面光电压信号。所以,本文认为提高光生电子-空穴对的分离效率是改善光催化性能的关键因素。  相似文献   

9.
Sulfur and copper codoped TiO2 nanoparticles were prepared by sol-hydrothermal process. And the samples were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectra analysis, scanning electron microscopy, Brunauer Emmett Teller analysis, UV–vis diffuse reflectance spectroscopy, X-ray photoelectron spectra and X-ray fluorescence analysis. It was found that the S, Cu-codoped TiO2 became amorphous with the increase of Cu content, and copper on the surface of TiO2 existed in the oxidation state of Cu(II) while S in the form of S6+ species. And the codoped particles had higher surface area, smaller particle size, stronger spectral response in visible region compared with pure TiO2. The effects of doping amount in a wide range, catalyst dosage, and recycle on the photocatalytic activity of the codoped catalysts were investigated with Acid Orange 7 as the model compound under visible light illumination (λ > 447 nm). The results showed that S (2.0 %), Cu (5.0 %) codoped TiO2 had the highest visible light photocatalytic activity and good reusability performance. The kinetic study showed that this photocatalytic process coincided with the Langmuir–Hinshelwood pseudo first order reaction model.  相似文献   

10.
La-doped TiO2 nanotubes (La/TiO2 NTs) were prepared by the combination of sol-gel process with hydrothermal treatment. The prepared samples were characterized by using transmission electron microscopy, x-ray diffraction, x-ray photoelectron spectra, and ultraviolet-visible spectra. The photocatalytic performance of La/TiO2 NTs was studied by testing the degradation rate of methyl orange under ultraviolet (UV) irradiation. The results indicated La/TiO2 NTs calcined at 300°C consisted of anatase as the unique phase. The absorption spectra of the La/TiO2 NTs showed a stronger absorption in the UV range and a slight red shift in the band gap transition than that of pure TiO2 nanotubes. The photocatalytic performance of TiO2 NTs could be improved by the doping of lanthanum ions, which is ascribed to several beneficial effects the formation of Ti-O-La bond and charge imbalance, existing of oxygen defects and Ti3+ species, stronger absorption in the UV range and a slight red shift in the band gap transition, as well as higher equilibrium dark adsorption of methyl orange. 0.75 wt% La/TiO2 NTs had the best catalytic activity.  相似文献   

11.
TiO2 microspheres were synthesized by the sol–gel method using the ionic liquid (IL) 1-vinyl-3-propylimidazolium iodide (VPIM+I?) as a reaction medium, then calcined at 500 °C. The samples were characterized by X-ray diffraction, scanning electron microscopy, and ultraviolet–visible (UV–Vis) diffuse reflectance spectroscopy. The phase of TiO2 microspheres is anatase, and VPIM+I? is able to favor the growth of anatase phase and prevents the collapse of small pores. The photocatalytic activity of TiO2-IL was tested by degradation of 2-nitrophenol under UV light illumination. The photocatalytic activity of TiO2-IL was higher than that of samples prepared in the reaction medium without VPIM+I?.  相似文献   

12.
Porous platinum ion-doped TiO2 (Pt–TiO2) was prepared by a sol–gel method and demonstrated to have superior photocatalytic activity for the photodegradation of gaseous trichloroethylene (TCE) under visible light (VL) irradiation from a xenon lamp equipped with 422-nm cut-off filter. Kinetic studies were performed to clarify the effect of the doping amounts, space times, VL intensity, and mole fractions of TCE, O2, and H2O on the degradation of TCE. Under ultraviolet (UV) irradiation, the photocatalytic activity of Pt–TiO2 was the same as that of TiO2, indicating that the doped Pt ion did not act as a recombination center for the photogenerated holes and electrons. Based on the kinetic data and reaction products, we conclude that the photocatalytic degradation of TCE on Pt–TiO2 under VL irradiation proceeds similarly to TiO2 under UV irradiation. We also performed the photocatalytic degradation of TCE at the space time of 7.5 × 107 g s mol?1 in a tubular reactor packed with the Pt–TiO2 pellets which are more suitable than the Pt–TiO2 powder for the practical remediation of the contaminated gas. TCE was completely degraded, i.e. 100% conversion was achieved under VL irradiation but only a small quantity of CO2 was formed with the stoichiometric ratio of [CO2]formed/[TCE]degraded of ca. 0.33. By switching the gas stream containing TCE to humid air, more CO2 was formed, indicating that the dichloroacetates accumulated on the Pt–TiO2 surface are photodegradable to CO2 under VL irradiation.  相似文献   

13.
TiO2 nanopowders doped by Si and Zr were prepared by sol–gel method. The effects of Si and Zr doping on the structural, optical, and photo-catalytic properties of titania nanopowders have been studied by X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy, and UV–Vis absorption spectroscopy. XRD results suggest that adding impurities has a significant effect on anatase phase stability, crystallinity, and particle size of TiO2. Titania rutile phase formation in ternary system (Ti–Si–Zr) was inhibited by Zr4+ and Si4+ co-doped TiO2 in high temperatures (500–900 °C) and 36 mol% anatase composition is retained even after calcination at 1,000 °C. The photocatalyst activity was evaluated by photocatalytic degradation kinetics of aqueous methylen orange under visible radiation. The results show that the photocatalytic activity of the 20 %Si and 15 %Zr co-doped TiO2 nanopowders have a larger degradation efficiency than pure TiO2 under visible light.  相似文献   

14.
A novel single‐source precursor NaGd(TFA)4(diglyme) (TFA=trifluoroacetate) was synthesized, characterized thoroughly, and used to obtain the hexagonal phase of NaGdF4 nanoparticles as an efficient matrix for lanthanide‐doped upconverting nanocrystals (NCs) that convert near‐infrared radiation into shorter‐wavelength UV/visible light. These NCs were then used to prepare well‐characterized TiO2@NaGdF4:Yb3+,Tm3+ nanocomposites to extend the absorption range of the TiO2 photocatalyst from the UV to the IR region. While the visible/near IR part of the photoluminescent spectra remains almost unaffected by the presence of TiO2, the UV part is strongly quenched due to the absorption of TiO2 above its gap at approximately 380 nm by energy transfer or FRET. Preliminary results on the photocatalytic activity of the above obtained nanocomposites are presented.  相似文献   

15.
Cobalt doped titania nanoparticles were synthesized by sol-gel method using titanium(IV) isopropoxide and cobalt nitrate as precursors. X-Ray diffraction (XRD) results showed that titania and Co/TiO2 nanoparticles only include anatase phase. The framework substitution of Co in TiO2 nanoparticles was established by XRD, scanning electron microscopy equipped with energy dispersive X-ray microanalysis (SEM-EDX) and Fourier transform infrared (FT-IR) techniques. Transmission electron microscopy (TEM) images confirmed the nanocrystalline nature of Co/TiO2. The increase of cobalt doping enhanced “red-shift” in the UV-Vis absorption spectra. The dopant suppresses the growth of TiO2 grains, agglomerates them and shifts the band absorption of TiO2 from ultraviolet (UV) to visible region. The photocatalytic activity of samples was tested for degradation of methyl orange (MO) solutions. Although the photocatalytic activity of undoped TiO2 was found to be higher than that of Co/TiO2 under UV irradiation, the presence of 0.5% Co dopant in TiO2 resulted in a catalyst with the highest activity under visible irradiation.  相似文献   

16.
Nanosized cerium and nitrogen co-doped TiO2 (Ce–TiO2?xNx) was synthesized by sol gel method and characterized by powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), FESEM, Fourier transform infrared, N2 adsorption and desorption methods, photoluminescence and ultraviolet–visible (UV–vis) DRS techniques. PXRD analysis shows the dopant decreases the crystallite sizes and slows the crystallization of the titania matrix. XPS confirm the existence of cerium ion in +3 or +4 state, and nitrogen in ?3 state in Ce–TiO2?xNx. The modified surface of TiO2 provides highly active sites for the dyes at the periphery of the Ce–O–Ti interface and also inhibits Ce particles from sintering. UV–visible DRS studies show that the metal–metal charge transfer (MMCT) of Ti/Ce assembly (Ti4+/Ce3+ → Ti3+/Ce4+) is responsible for the visible light photocatalytic activity. Photoluminescence was used to determine the effect of cerium ion on the electron–hole pair separation between the two interfaces Ce–TiO2?xNx and Ce2O3. This separation increases with the increase of cerium and nitrogen ion concentrations of doped samples. The degradation kinetics of methylene blue and methyl violet dyes in the presence of sol gel TiO2, Ce–TiO2?xNx and commercial Degussa P25 was determined. The higher visible light activity of Ce–TiO2?xNx was due to the participation of MMCT and interfacial charge transfer mechanism.  相似文献   

17.
Vanadium doped titanium dioxide (V–TiO2) photocatalyst was synthesized by the sol–gel method using ammonium vanadate as vanadium source. The prepared samples were characterized by XRD, N2 adsorption–desorption method, UV–Vis DRS, Fourier transform infrared (FTIR), scanning electron microscope–energy dispersive X-ray and photoluminescence (PL) analysis. The results show that V5+ ions were successfully incorporated into the crystal lattice of TiO2 as a consequence, not only an obvious decrease in the band gap and a red shift of the absorption threshold into the visible light region was recorded for the V modified TiO2, but, also a decrease in photogenerated electrons and holes recombination rate was observed as demonstrated by PL analysis. FTIR study indicated that in undoped TiO2 sample the acetate group favored a bidentate bridging mode of binding with titanium atoms, whereas a bidentate chelating mode of linkage was observed in V–TiO2 powders. The crystallite size of the samples calcined at 300 and 500 °C were decreased beyond the molar ratio of 200:1 (V:Ti), this may be due to dopant presence in the grain boundaries hindering the crystal growth. The photocatalytic activities for both pure and vanadium doped TiO2 powders were tested in the discoloration of a reactive dyestuff, methylene blue, under visible light. The 100:1 (V:Ti) doped photocatalyst, calcined at 300 °C showed enhanced photocatalytic activity under visible light with a rate constant (kobs) of 5.024 × 10?3 min?1 which is nearly five times higher than that of pure TiO2, as result of low band gap value, high specific surface area and a decrease in recombination rate.  相似文献   

18.
Mesoporous TiO2 has been synthesized by the sol–gel method, using a nonionic triblock copolymer P123 as surfactant template under acidic conditions. The as-prepared samples were characterized by thermogravimetry–differential thermal analysis (TG–DTA), nitrogen absorption–desorption (BET), field emission scanning electron microscopy, and transmission electron microscopy. The photocatalytic activity of the mesoporous TiO2 was evaluated by degradation of methylene blue under high-intensity UV light irradiation; the amount of methylene blue was measured by UV–visible spectroscopy. TG–DTA analysis revealed that the surfactant had been removed partly in as-synthesized samples. BET analysis proved that all the samples retained mesoporosity with a narrow pore-size distribution (4.5–6.3 nm) and high surface area (103–200 m2/g). All calcined mesoporous TiO2 had high photocatalytic activity in the photodegradation of methylene blue.  相似文献   

19.
Sonophotocatalytic activity of methyl orange over Fe(III)/TiO2   总被引:1,自引:0,他引:1  
TiO2 doped with Fe3+ was prepared by an impregnation technique and its sonophotocatalytic activity over methyl orange (MO) was investigated. The Fe/TiO2 surface presented red shift to longer wavelength, resulting in a lower energy band gap. Fe loading of 0.1 wt% on TiO2 provided the optimum degradation. The MO degradation rate constant under sonophotocatalytic conditions was 2.5 times higher than under photocatalytic conditions.  相似文献   

20.
In this article, TiO2 nanorods (aspect ratio >20) were prepared through a polyol process and doped with metal ions (Cu2+, Ni2+, Fe3+, and Cr3+). Compared with TiO2 nanoparticles, the TiO2 nanorods displayed relatively higher photocatalytic activity for the degradation of copper sulfophthalocyanine. Moreover, the photocatalytic activity was greatly enhanced when the metal ions were doped in the TiO2 nanorods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号