共查询到20条相似文献,搜索用时 46 毫秒
1.
Although vortex-induced vibration (VIV) has been extensively studied, much of existing literature deals with uniform flow in the absence of a boundary. The VIV flow field of a structure close to a boundary generally remains unexplored, but it can have important engineering implications, such as pipeline scour if the boundary is an erodible seabed. In this paper, laboratory experiments are performed to investigate the flow characteristics of an elastically mounted circular cylinder undergoing VIV, and a rigid plane boundary is considered to simplify the problem. The initial gap-to-diameter ratio is fixed at 0.8, and six different reduced velocities are considered. The velocity field is measured using a high resolution particle image velocimetry (PIV) system, which has several advantages over traditional PIV systems, including high sampling rate and the ability to mitigate scatter of laser light near the boundary, allowing accurate measurements at the viscous sublayer. This paper presents the vibration amplitude and oscillation frequency for different Vr; in addition, the mean velocity field, turbulence characteristics, vortex behavior, gap flow velocity, and normal/shear stresses on the boundary were measured/calculated, leading to new insights on the flow field behavior. 相似文献
2.
This paper reports the first experimental study of liquid neon injection into superfluid helium (He II) through a plain orifice atomizer to explore different means of introducing micron-size tracer particles into a He II bath for particle image velocimetry (PIV) applications. The obtained results verify that the direct injection of liquid neon into He II introduces seed particles into the He II bath. It is also demonstrated that the particle sizes can be controlled by changing the pressure above the injected liquid. Additionally, the size distribution of the particles is calculated from the PIV results through the use of the correlations to the standard drag curve. 相似文献
3.
Chang Lin Tsung-Chun Ho Sung-Chieh Chang Shih-Chun Hsieh Kuang-An Chang 《International Journal of Heat and Fluid Flow》2005,26(6):894-904
Experimental study was conducted on the vortex shedding process induced by the interaction between a solitary wave and a submerged vertical plate. Particle image velocimetry (PIV) was used for quantitative velocity measurement while a particle tracing technique was used for qualitative flow visualization. Vortices are generated at the tip of each side of the plate. The largest vortices at each side of the plate eventually grow to the size of the water depth. Although the fluid motion under the solitary wave is only translatory, vortices are shed in both the upstream and downstream directions due to the interaction of the generated vortices as well as the vortices with the plate and the bottom. The process can be divided into four phases: the formation of a separated shear layer, the generation and shedding of vortices, the formation of a vertical jet, and the impingement of the jet onto the free surface. Similarity velocity profiles were found both in the separated shear layer and in the vertical jet. 相似文献
4.
N. TonuiD. Sumner 《Journal of Fluids and Structures》2011,27(1):62-75
The flow around square and diamond prisms and a circular cylinder impulsively set into motion was studied experimentally using the particle image velocimetry (PIV) technique. The experiments were conducted in water in an X-Y towing tank for Reynolds numbers from Re=200-1000. The temporal development of the near-wake recirculation zone, and its pair of primary eddies, was examined from the initial start until the wake became asymmetric, at a dimensionless elapsed time of t?=4 or 5. For both bodies, the length of the recirculation zone, the streamwise location of the primary eddies, and the strength of the primary eddies increased with time following the impulsive start, while the cross-stream spacing of the eddy centres remained nearly constant. The recirculation zones of the square and diamond prisms were longer than that of the impulsively started circular cylinder. For t?>2, the primary eddy strength, maximum vorticity, and cross-stream spacing of the primary eddies, were the same for both the square prism and circular cylinder. The diamond prism had the strongest primary eddies and highest maximum values of vorticity. A comparison of recirculation zone length data for impulsively started bluff bodies of six different cross-sections illustrated the effects of afterbody and forebody shape, with the normal flat plate (no afterbody and no forebody) having the longest recirculation zone and the circular cylinder (rounded afterbody and rounded forebody) having the shortest recirculation zone. 相似文献
5.
Experimental data on velocity fields and flow patterns near a moving contact line is shown to be at variance with existing hydrodynamic theories. The discrepancy points to a new hydrodynamic paradox and suggests that the hydrodynamic approach may be incomplete and further parameters or forces affecting the surfaces may have to be included. A contact line is the line of intersection of three phases: (1) a solid, (2) a liquid, and (3) a fluid (liquid or gas) phase. A moving contact line develops when the contact line moves along the solid surface. A flat plate moved up and down, inside and out of a liquid pool defines a simple, reliable experimental model to characterize dynamic contact lines. Highlighted are three important conclusions from the experimental results that should be prominent in the development of new theoretical models for this flow. First, the velocity along the streamline configuring the liquid–fluid interface is remarkably constant within a distance of a couple of millimeters from the contact line. Second, the relative velocity of the liquid–fluid interface, defined as the ratio of the velocity along the interface to the velocity of the solid surface, is independent of the solid surface velocity. Third, the relative interface velocity is a function of the dynamic contact angle. 相似文献
6.
7.
This study utilized the particle image velocimetry (PIV) technique, non-invasively near the wall, in the developing region, for the measurements of laminar and turbulent properties during circulation of Geldart B type particles in the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) riser. A novel method was used to measure axial and radial laminar and turbulent solids dispersion coefficients using autocorrelation technique.The instantaneous and hydrodynamic velocities for the solid phase were measured simultaneously in the axial and radial directions using a CCD camera, with the help of a colored rotating transparency. The measured properties, such as laminar and Reynolds stresses, laminar and turbulent granular temperatures, laminar and turbulent dispersion coefficients and energy spectra exhibited anisotropy. The mixing in the riser was on the level of clusters. The total granular temperatures were in reasonable agreement with the literature values. However, the axial and radial solids dispersion coefficients measured near the wall were slightly lower than the radially averaged values in the literature. 相似文献
8.
《Comptes Rendus Mecanique》2017,345(7):467-476
Ludwig Prandtl (1875–1953) has been called the father of modern aerodynamics. His name is associated most famously with the boundary layer concept, but also with several other topics in 20th-century fluid mechanics, particularly turbulence (Prandtl's mixing length). Among his disciples are pioneers of modern fluid mechanics like Heinrich Blasius, Theodore von Kármán, and Walter Tollmien. Furthermore, Prandtl founded the Aerodynamische Versuchsanstalt (AVA) and the Kaiser-Wilhelm-Institut für Strömungsforschung in Göttingen, nuclei for the growth of fluid mechanics in Germany. In this article I trace this development on the basis of my recent biography of Prandtl. 相似文献
9.
The turbulence structure of a horizontal channel flow with microbubbles is experimentally investigated using combined particle image velocimetry (PIV) in order to clarify the mechanism of drag reduction caused by microbubbles. A new system which simultaneously measures the liquid phase and the dispersed bubbles is proposed, based on a combination of particle tracking velocimetry (PTV), laser-induced fluorescence (LIF) and the shadow image technique (SIT). To accurately obtain the velocity of the liquid phase, tracer particles which overlap with the bubble shadow images are almost entirely eliminated in the post-processing. Finally, the turbulence characteristics of the flow field are presented, including measurements for both phases, and the bubble effect on the turbulence is quantified. 相似文献
10.
11.
The flapping flag is a canonical fluid–structure interaction problem that describes a cantilever plate with flow along its elastic axis. When the flapping flag loses stability it enters a large amplitude Limit Cycle Oscillation (LCO). While theoretical models can accurately predict the flutter velocity and frequency, there are still discrepancies between the experimental observations and the theoretical predictions of the post-critical LCO response. This note provides recent flow field visualizations in a single longitudinal plane for a cantilevered aluminum plate in axial flow during its LCO. Particle Image Velocimetry (PIV) techniques are used to show that the flow over the midspan of the plate is attached even during the violent LCO motion. This observation suggests that potential flow aerodynamic models may be able to capture the essential features in the flow field. 相似文献
12.
Analysis of regular and irregular acoustic streaming patterns in a rectangular enclosure 总被引:1,自引:0,他引:1
This study reports an experimental investigation of the non-linear phenomena of regular (classical) and irregular streaming patterns generated in an air-filled rigid-walled square channel subjected to the acoustic standing waves of different frequencies and intensities. The interaction of acoustic waves and thermoviscous fluids is responsible for these phenomena. The resonator’s walls are maintained at isothermal condition. Synchronized particle image velocimetry (PIV) technique has been used to measure the streaming velocity fields. The experimental results show that at a given excitation frequency, regular streaming flow patterns are observed up to a certain value of the excitation amplitude. As the amplitude increases beyond this limit, the regular streaming is distorted to an irregular flow structure. The regular and irregular streaming are classified in terms of streaming Reynolds number . It is found that for Res2<50, classical streaming flow patterns are established and then deform to irregular and complex shapes as Res2 exceeds 50. 相似文献
13.
This study aims to examine the relationship between thermal stratification and flow patterns in a steam-quenching suppression pool using particle image velocimetry. Thermal stratification was experimentally evaluated in a depressurized water pool under different steam mass flux conditions. The time evolution of the temperature profile of the suppression pool was presented with the variation of condensation regimes, and steam condensation processes were visualized using a high-speed camera. The thermal stratification condition was classified into full mixing, gradual thermal stratification, and developed thermal stratification. It was found that the condition was determined by the flow patterns depending on the force balance between buoyancy and momentum. The force balance affected both the condensation regime and the flow pattern, and hence, the flow pattern was changed with the condensation regime. However, the force balance had a sensitive influence on the flow in the pool; therefore, distinct flow patterns were observed even in the same condensation regime. 相似文献
14.
Pollen-shape (spiked sphere) hydroxyapatite (HA) particles for drug carrier application are studied. The particle shape and size effect on flow characteristics and deposition are assessed. The pollen-shape HA particles are synthesized to have comparable size as typical carrier particles with mean diameter of 30-50 m and effective density less than 0.3 g/cm 3 . The flow behaviors of HA and commonly used lactose (LA) carrier particles are characterized by the Carr's compressibility index (CI). The HA particle... 相似文献
15.
The control of the unsteady flow structure formed behind a cylinder placed horizontally in shallow water was analyzed experimentally using bare cylinder and cylinders with cavities having square and rectangular geometries, respectively. Reynolds number, Froude number and water height had been chosen as 5000, 0.27 and 90 mm, respectively and also these parameters were kept constant for all experiments. To consider the influence of height (h), the cylinder level was located at various heights from h: 0 mm to 60 mm. Furthermore, cavity angle (a) had been selected from 0°, 80°, 85°, 90° and 95° to consider influence of cavity angle on flow. With the help of Particle Image Velocimetry (PIV), average velocity vectors were measured in two dimensions at many points simultaneously in a planar flow area. The results uncovered that large negative counter was observed at h: 37.5 mm in bare cylinder as well as cylinders having square and rectangular cavities at h: 45 mm. Also, no negative counter was observed for cylinders having rectangular cavity at h: 0 mm and a: 90° and 95° due to the bottom effect. Due to surface effects, a foci point was formed in all cylinders where close to the surface and close to the base. Two foci points and a saddle point were seen as they moved away from the surface for all cylinders. Also, the smallest vortex region was observed for cylinders having rectangular cavity at h: 37.5 mm and a: 90° and 95° in whole cylinders. Also, the highest drag coefficient (Cd) value was obtained for cylinder having square cavity at h: 52.5 mm and a: 80° while the highest drag coefficient value was obtained for cylinder having rectangular cavity at h: 37.5 mm and a: 95°. 相似文献
16.
Grouser wheels have been used in planetary rovers to improve mobility performance on sandy terrains. The biggest difference between a wheel with and without grousers is the soil behavior beneath the wheel as the grousers shovel the soil. By analyzing the soil flow, we gain insight into the mechanics dominating the interaction between the wheel and the soil, directly impacting performance. As the soil flow varies depending on the soil properties, the effects of soil type on soil behavior and wheel-traveling performance should be studied. This paper reveals the difference in soil flow and wheel performance on cohesive and non-cohesive soils. We conducted a series of single wheel tests over different types of soils under several wheel-traveling conditions. Soil flow was visualized by using particle image velocimetry (PIV). The experimental results indicate that soil flow characteristics highly depend on the shear strength of the soil. The cohesive soil exhibited lower fluidity due to its higher shear strength. At the same time, the wheel displayed a higher traveling performance over the cohesive soil, that is, a lower slip ratio. 相似文献
17.
Steady streaming flow fields of a 5 μm bubble oscillating with uniform radial wall motion and a 500 μm bubble oscillating with wavy wall motion were simulated using a computational fluid dynamics method that incorporated fluid–structure interactions. The steady streaming flow fields for both bubbles were calculated, and they exhibited upward jet flow with two symmetrical counter-rotating vortices. The maximum streaming velocity ranged from a few to tens of millimeters per second. The simulated flow fields were compared with the theory and experimental measurements using particle image velocimetry. The simulation results agreed well with the theoretical and experimental data. Therefore, the proposed computational method would provide a useful tool to predict steady streaming flow fields of oscillating bubbles. 相似文献
18.
The particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) techniques are used to study the flow induced on the surface of a body of saltwater when a drop impinges on its surface or when a source is present on the surface. The measurements show that the impingement of a fresh water drop causes a strong axisymmetric solutocapillary flow about the vertical line passing through the center of impact. The fluid directly below the center of impact rises upward, and near the surface it moves away from the center of impact. The flow, which develops within a fraction of second after the impact, persists for several seconds. In comparison, when a freshwater drop falls on a body of freshwater, the flow induced on the surface is much weaker and persists for a relatively shorter duration of time and the volume of water circulated is two orders of magnitude smaller. Similarly, when a fresh water source is present on a body of saltwater there is a solutocapillary flow which on the surface is away from the source and below the surface is towards the source. 相似文献
19.
A speckle photographic technique is used for visualizing the planar distribution of the refractive deflection angles of light
transmitted through a compressible turbulent flow. Double exposure speckle photography is applied for the statistical analysis
of such flows. Quantitative visualization of the planar distribution of the refractive deflection angles of the light transmitted
through the compressible turbulent flow is performed. Turbulent structures are visible in the patterns of the deflection angles
isolines. The 2-D correlation functions of these deflection angles are constructed and analyzed. A mathematical procedure
for solving Erbeck-Merzkirch integral transformation is described and the 3-D density correlation functions are evaluated
using 2-D correlation functions of deflection angles of the light passed through the turbulence.
Received 14 November 1999 / Accepted 3 June 2000 相似文献