首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Triplet state mechanism of [2 + 2] photocycloaddition forming a cyclobutane ring from two ethylenes is investigated in the context of photocatalysis. High‐level ab initio calculations are combined with ab initio adiabatic molecular dynamics and ab initio metadynamics for rare events modeling. In a photocatalytic scheme, a reactant reaches the triplet state either via intersystem crossing (ISC) or triplet sensitization. The model system adopts a biradical structure, which represents energy intersection with the ground state. The system either completes cyclization or undergoes fragmentation into two olefinic units. The potential and free energy surfaces of the cyclobutane/ethylenes system are mapped with multireference approaches describing possible reaction pathways. To obtain a full picture of a double bond photoreactivity, ab initio adiabatic dynamical calculations were used to estimate reaction yields and to model the effects of excess energy. The potential use of density functional theory based approaches for [2 + 2] photocycloaddition was investigated for future simulations and design of realistic photocatalytic systems. Dynamical aspects of [2 + 2] photocycloaddition via a triplet state manifold are investigated by combining ab initio multireference methods and ab initio molecular dynamics and metadynamics. The reaction pathways are studied for a model system of two ethylenes forming a cyclobutane ring to provide a basis for further studies on design of photocatalytic systems.  相似文献   

2.
This paper presents a new ground state (1 (2)A(')) electronic potential energy surface for the F((2)P)+HCl-->HF+Cl((2)P) reaction. The ab initio calculations are done at the multireference configuration interaction+Davidson correction (MRCI+Q) level of theory by complete basis set extrapolation of the aug-cc-pVnZ (n=2,3,4) energies. Due to low-lying charge transfer states in the transition state region, the molecular orbitals are obtained by six-state dynamically weighted multichannel self-consistent field methods. Additional perturbative refinement of the energies is achieved by implementing simple one-parameter correlation energy scaling to reproduce the experimental exothermicity (DeltaE=-33.06 kcalmol) for the reaction. Ab initio points are fitted to an analytical function based on sum of two- and three-body contributions, yielding a rms deviation of <0.3 kcalmol for all geometries below 10 kcalmol above the barrier. Of particular relevance to nonadiabatic dynamics, the calculations show significant multireference character in the transition state region, which is located 3.8 kcalmol with respect to F+HCl reactants and features a strongly bent F-H-Cl transition state geometry (theta approximately 123.5 degrees ). Finally, the surface also exhibits two conical intersection seams that are energetically accessible at low collision energies. These seams arise naturally from allowed crossings in the C(infinityv) linear configuration that become avoided in C(s) bent configurations of both the reactant and product, and should be a hallmark of all X-H-Y atom transfer reaction dynamics between ((2)P) halogen atoms.  相似文献   

3.
Rate coefficients are calculated using canonical variational transition state theory with multidimensional tunneling (CVT/SCT) for the reactions H + H2O2 --> H2O + OH (1a) and H + H2O2 --> HO2 + H2 (1b). Reaction barrier heights are determined using two theoretical approaches: (i) comparison of parametrized rate coefficient calculations employing CVT/SCT to experiment and (ii) high-level ab initio methods. The evaluated experimental data reveal considerable variations of the barrier height for the first reaction: although the zero-point-exclusive barrier for (1a) derived from the data by Klemm et al. (First Int. Chem. Kinet. Symposium 1975, 61) is 4.6 kcal/mol, other available measurements result in a higher barrier of 6.2 kcal/mol. The empirically derived zero-point-exclusive barrier for (1b) is 10.4 kcal/mol. The electronic structure of the system at transition state geometries in both reactions was found to have "multireference" character; therefore special care was taken when analyzing electronic structure calculations. Transition state geometries are optimized by multireference perturbation theory (MRMP2) with a variety of one-electron basis sets, and by a multireference coupled cluster (MR-AQCCSD) method. A variety of single-reference benchmark-level calculations have also been carried out; included among them are BMC-CCSD, G3SX(MP3), G3SX, G3, G2, MCG3, CBS-APNO, CBS-Q, CBS-QB3, and CCSD(T). Our data obtained at the MRMP2 level are the most complete; the barrier height for (1a) using MRMP2 at the infinite basis set limit is 4.8 kcal/mol. Results are also obtained with midlevel single-reference multicoefficient correlation methods, such as MC3BB, MC3MPW, MC-QCISD/3, and MC-QCISD-MPWB, and with a variety of hybrid density functional methods, which are compared with high-level theory. On the basis of the evaluated experimental values and the benchmark calculations, two possible recommended values are given for the rate coefficients.  相似文献   

4.
Potential energy surfaces for the reactions of CH4+ with H2, HD, and D2 have been calculated using high-level ab initio methods, including coupled cluster theory, complete active space self-consistent field, and multireference configuration interaction. The energies are extrapolated to the complete basis set limit using the basis sets aug-cc-pVXZ (X = D, T, Q, 5, 6). The CH4+ + H2 reaction produces CH5+ and H exclusively. Three types of reaction mechanisms have been found, namely, complex-forming abstraction, scrambling, and S(N)2 displacement. The abstraction occurs via a very minor barrier and it is dominant. The other two mechanisms are negligible because of the significant barriers involved. Quantum phase space theory and variational transition state theory are used to calculate the rate coefficients as a function of temperatures in the range of 5-1000 K. The theoretical rate coefficients are compared with the available experimental data and the discrepancy is discussed. The significance of isotope effect, tunneling effect, and nuclear spin effect is investigated. The title reaction is predicted to be slightly exothermic with DeltaHr = -12.7 +/- 5.2 kJ/mol at 0 K.  相似文献   

5.
This letter revisits critical intermediates and transition states of the C2H3 + O2 reaction. To obtain their accurate relative energies, ab initio calculations are performed using sophisticated single and multireference theoretical methods with various basis sets. The energy difference between two crucial transition states, for ring opening in dioxiranylmethyl radical and its isomerization to C2H3OO, is calculated as approximately 2 kcal/mol both at multireference MRCI and at single-reference CCSD(T) levels extrapolated to the complete basis set limit. The deviation from the earlier G2M(RCC,MP2) value (approximately 7 kcal/mol) is caused by a deficiency of the 6-311+G(3df,2p) basis set as compared to correlation-consistent Dunning's basis sets.  相似文献   

6.
The reaction of NCN with O is relevant to the formation of prompt NO according to the new mechanism, CH+N2-->cyclic-C(H)NN- -->HNCN-->H+NCN. The reaction has been investigated by ab initio molecular orbital and transition state theory calculations. The mechanisms for formation of possible product channels involved in the singlet and triplet potential energy surfaces have been predicted at the highest level of the modified GAUSSIAN-2 (G2M) method, G2M (CC1). The barrierless association/dissociation processes on the singlet surface were also examined with the third-order Rayleigh-Schr?dinger perturbation (CASPT3) and the multireference configuration interaction methods including Davidson's correction for higher excitations (MRCI+Q) at the CASPT3(6,6)/6-311+G(3df)//UB3LYP/6-311G(d) and MRCI+Q(6,6)/6-311+G(3df)//UB3LYP/6-311G(d) levels. The rate constants for the low-energy channels producing CO+N2, CN+NO, and N(4S)+NCO have been calculated in the temperature range of 200-3000 K. The results show that the formation of CN+NO is dominant and its branching ratio is over 99% in the whole temperature range; no pressure dependence was noted at pressures below 100 atm. The total rate constant can be expressed by: kt=4.23x10(-11) T0.15 exp(17/T) cm3 molecule(-1) s(-1).  相似文献   

7.
In this paper, we employ state of the art quantum chemical and transition state theory methods in making a priori kinetic predictions for the abstraction reaction of CN with ethane. This reaction, which has been studied experimentally over an exceptionally broad range of temperature (25-1140 K), exhibits an unusually strong minimum in the rate constant near 200 K. The present theoretical predictions, which are based on a careful consideration of the two distinct transition state regimes, quantitatively reproduce the measured rate constant over the full range of temperature, with no adjustable parameters. At low temperatures, the rate-determining step for such radical-molecule reactions involves the formation of a weakly bound van der Waals complex. At higher temperatures, the passage over a subthreshold saddle point on the potential energy surface, related to the formation and dissolution of chemical bonds, becomes the rate-determining step. The calculations illustrate the changing importance of the two transition states with increasing temperature and also clearly demonstrate the need for including accurate treatments of both transition states. The present two transition state model is an extension of that employed in our previous work on the C2H4 + OH reaction [J. Phys. Chem. A 2005, 109, 6031]. It incorporates direct ab initio evaluations of the potential in classical phase space integral based calculations of the fully coupled anharmonic transition state partition functions for both transition states. Comparisons with more standard rigid-rotor harmonic oscillator representations for the "inner" transition state illustrate the importance of variational, anharmonic, and nonrigid effects. The effects of tunneling through the "inner" saddle point and of dynamical correlations between the two transition states are also discussed. A study of the kinetic isotope effect provides a further test for the present two transition state model.  相似文献   

8.
In this work we present a study of the F+CH(4)-->HF+CH(3) reaction (DeltaHdegrees(298 K)=-32.0 kcal mol(-1)) using different methods of the chemical reaction theory. The ground potential energy surface (PES) is characterized using several ab initio methods. Full-dimensional rate constants have been calculated employing the variational transition state theory and using directly ab initio data. A triatomic analytical representation of the ground PES was derived from ab initio points calculated at the second- and fourth-order M?ller-Plesset levels with the 6-311+G(2df,2pd) basis set, assuming the CH(3) fragment to be a 15 a.m.u. pseudoatom in the fitting process. This is suggested from experiments that indicate that the methyl group is uncoupled to the reaction coordinate. A dynamics study by means of the quasiclassical trajectory (QCT) method and employing this analytical surface was also carried out. The experimental data available on the HF internal states distributions are reproduced by the QCT results. Very recent experimental information about the reaction stereodynamics is also borne out by our QCT calculations. Comparisons with the benchmark F+H(2) and analogous Cl+CH(4) reactions are established throughout.  相似文献   

9.
10.
Variational transition state theory calculations with the correction of multidimensional tunneling are performed on a 12-dimensional ab initio potential energy surface for the H + SiH(4) abstraction reaction. The surface is constructed using a dual-level strategy. For the temperature range 200-1600 K, thermal rate constants are calculated and kinetic isotope effects for various isotopic species of the title reaction are investigated. The results are in very good agreement with available experimental data.  相似文献   

11.
Gas-phase activation energies were calculated for three lithium enolate reactions by using several different ab initio and density functional theory (DFT) methods to determine which levels of theory generate acceptable results. The reactions included an aldol-type addition of an enolate to an aldehyde, a proton transfer from an alcohol to a lithium enolate, and an S(N)2 reaction of an enolate with chloromethane. For each reaction, the calculations were performed for both the monomeric and dimeric forms of the lithium enolate. It was found that transition state geometry optimization with B3LYP followed by single point MP2 calculations generally provided acceptable results compared to higher level ab initio methods.  相似文献   

12.
Ab initio and density functional theory (DFT) calculations using the GAUSSIAN 94 program have been performed to investigate the molecular structures of HNSi and HSiN in the ground state as well as the transition state for the HNSi–HSiN isomerization reaction at the 6-311G(d,p), 6-311+G(2d,p) and 6-311+G(2df,p) basis sets. The results show that DFT calculations at higher levels of theory reproduce experimental vibrational frequencies of both HNSi and HSiN better than ab initio methods including electron correlation effects. Those calculated geometries are accurate enough to predict the rotational constant of HNSi. The barrier height for the isomerization reaction is found to be about 10 kcal/mol.  相似文献   

13.
[reaction: see text] We present an ab initio study of the acid-promoted hydrolysis reaction mechanism of N-formylaziridine in comparison with formamide. Since the rate of amide hydrolysis reactions depends on the formation of the tetrahedral intermediate, we focused our attention mainly on the reactant complex, the tetrahedral intermediate, and the transition state connecting these two stationary points. Geometries were optimized using the density functional theory, and the energetics were refined using ab initio theory including electron correlation. Solvent effects were investigated by using polarizable continuum method calculations. The proton-transfer reaction between the O-protonated and N-protonated amides was investigated. In acidic media, despite that the N-protonated species is more stable than the O-protonated one, it is predicted that both N-protonated and O-protonated pathways compete in the hydrolysis reaction of N-formylaziridine.  相似文献   

14.
We report an ab initio multireference perturbation theory investigation of the HO(2) + H(2)O + O(3) reaction, with particular emphasis on the barrier heights for two possible reaction mechanisms: oxygen abstraction and hydrogen abstraction, which are identified by two distinct saddle points. These saddle points and the corresponding pre-reactive complexes were optimized at the CASSCF(11,11) level while the single point energies were calculated with three different MRPT2 theories: MRMP, CASPT2, and SC-NEVPT2. Special attention has been drawn on the "intruder state" problem and the effect of its corrections on the relative energies. The results were then compared with single reference coupled-cluster methods and also with our recently obtained Kohn-Sham density functional theory (KS-DFT) calculations [L. P. Viegas and A. J. C. Varandas, Chem. Phys., (2011)]. It is found that the relative energies of the pre-reactive complexes have a very good agreement while the MRPT2 classical barrier heights are considerably higher than the KS-DFT ones, with the SC-NEVPT2 calculations having the highest energies between the MRPT2 methods. Possible explanations have been given to account for these differences.  相似文献   

15.
The reaction of formaldehyde radical anion with methyl chloride, CH2O*- + CH3Cl, is an example in which a single transition state leads to two products: substitution at carbon (Sub(C), CH3CH2O* + Cl-) and electron transfer (ET, CH2O + CH3* + Cl-). The branching ratio for this reaction has been studied by ab initio molecular dynamics (AIMD). The energies of transition states and intermediates were computed at a variety of levels of theory and compared to accurate energetics calculated by the G3 and CBS-QB3 methods. A bond additivity correction has been constructed to improve the Hartree-Fock potential energy surface (BAC-UHF). A satisfactory balance between good energetics and affordable AIMD calculations can be achieved with BH&HLYP/6-31G(d) and BAC-UHF/6-31G(d) calculations. Approximately 200 ab initio classical trajectories were calculated for each level of theory with initial conditions sampled from a thermal distribution at 298 K at the transition state. Three types of trajectories were distinguished: trajectories that go directly to ET product, trajectories that go to Sub(C) product, and trajectories that initially go into the Sub(C) valley and then dissociate to ET products. The BH&HLYP/6-31G(d) calculations overestimate the number of nonreactive and direct ET trajectories because the transition state is too early. For the BH&HLYP and BAC-UHF methods, about one-third of the trajectories that initially go into the Sub(C) valley dissociate to ET products, compared to just over half with UHF/6-31G(d) in the earlier study. This difference can be attributed to a better value for the calculated energy release from the initial transition state and to an improved Sub(C) --> ET barrier height with the BH&HLYP and BAC-UHF methods.  相似文献   

16.
Theoretical investigations on the kinetics of the elementary reaction H2O2+H→H2O+OH were performed using the transition state theory (TST). Ab initio (MP2//CASSCF) and density functional theory (B3LYP) methods were used with large basis set to predict the kinetic parameters; the classical barrier height and the pre-exponential factor. The ZPE and BSSE corrected value of the classical barrier height was predicted to be 4.1 kcal mol−1 for MP2//CASSCF and 4.3 kcal mol−1 for B3LYP calculations. The experimental value fitted from Arrhenius expressions ranges from 3.6 to 3.9 kcal mol−1. Thermal rate constants of the title reaction, based on the ab initio and DFT calculations, was evaluated for temperature ranging from 200 to 2500 K assuming a direct reaction mechanism. The modeled ab initio-TST and DFT–TST rate constants calculated without tunneling were found to be in reasonable agreement with the observed ones indicating that the contribution of the tunneling effect to the reaction was predicted to be unimportant at ambient temperature.  相似文献   

17.
The rate coefficient for the ion-molecule reaction NH3(+) + H2 --> NH4(+) + H has been calculated as a function of temperature with the use of the statistical phase space approach. The potential surface and reaction complex and transition state parameters used in the calculation have been taken from ab initio quantum chemical calculations. The calculated rate coefficient has been found to mimic the unusual temperature dependence measured in the laboratory, in which the rate coefficient decreases with decreasing temperature until 50-100 K and then increases at still lower temperatures. Quantitative agreement between experimental and theoretical rate coefficients is satisfactory given the uncertainties in the ab initio results and in the dynamics calculations. The rate coefficient for the unusual three-body process NH3(+) + H2 + He --> NH4(+) + H + He has also been calculated as a function of temperature and the result found to agree well with a previous laboratory determination.  相似文献   

18.
The production of OH and HO(2) in Cl-initiated oxidation of cyclohexane has been measured using pulsed-laser photolytic initiation and continuous-laser absorption detection. The experimental data are modeled by master equation calculations that employ new G2(MP2)-like ab initio characterizations of important stationary points on the cyclo-C(6)H(11)O(2) surface. These ab initio calculations are a substantial expansion on previously published characterizations, including explicit consideration of conformational changes (chair-boat, axial-equatorial) and torsional potentials. The rate constants for the decomposition and ring-opening of cyclohexyl radical are also computed with ab initio based transition state theory calculations. Comparison of kinetic simulations based on the master equation results with the present experimental data and with literature determinations of branching fractions suggests adjustment of several transition state energies below their ab initio values. Simulations with the adjusted values agree well with the body of experimental data. The results once again emphasize the importance of both direct and indirect components of the kinetics for the production of both HO(2) and OH in radical + O(2) reactions.  相似文献   

19.
We describe fully quantum, time-independent scattering calculations of the F+H2-->HF+H reaction, concentrating on the HF product rotational distributions in v'=3. The calculations involved two new sets of ab initio potential energy surfaces, based on large basis set, multireference configuration-interaction calculations, which are further scaled to reproduce the experimental exoergicity of the reaction. In addition, the spin-orbit, Coriolis, and electrostatic couplings between the three quasidiabatic F+H2 electronic states are included. The calculated integral cross sections are compared with the results of molecular beam experiments. At low collision energies, a significant fraction of the reaction is due to Born-Oppenheimer forbidden, but energetically allowed reaction of F in its excited (2P 1/2) spin-orbit state. As the collision energy increases, the Born-Oppenheimer allowed reaction of F in its ground (2P 3/2) spin-orbit state rapidly dominates. Overall, the calculations agree reasonably well with the experiment, although there remains some disagreement with respect to the degree of rotational excitation of the HF(v'=3) products as well as with the energy dependence of the reactive cross sections at the lowest collision energies.  相似文献   

20.
The mechanism for the O + CH2OH reaction was investigated by various ab initio quantum chemistry methods. For the chemical activation mechanism, that is, the addition/elimination path, the couple-cluster methods including CCSD and CCSD(T) were employed with the cc-pVXZ (X = D, T, Q, 5) basis sets. For the abstraction channels, multireference methods including CASSCF, CASPT2, and MRCISD were used with the cc-pVDZ and cc-pVTZ basis sets. It has been shown that the production of H + HCOOH is the major channel in the chemical activation mechanism. The minor channels include HCO + H2O and OH + CH2O. The hydrogen abstraction by an O atom from the CH2OH radical produces either OH + CH2O or OH + HCOH. Moreover, the two abstraction reactions are essentially barrierless processes. The rate constants for the association of O with CH2OH have been calculated using the flexible transition state theory. A weak negative temperature dependence of the rate constants is found in the range 250-1000 K. Furthermore, it is estimated that the abstraction processes also play an important role in the O + CH2OH reaction. Additionally, the falloff behavior for the OCH2OH --> H + HCOOH reaction has been investigated. The present theoretical results are compared to the experimental measurements to understand the mechanism and kinetic behavior of the O + CH2OH reaction and the unimolecular reaction of the OCH2OH radical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号