首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 700 毫秒
1.
The action of different molar ratios of α, β, γ-cyclodextrin upon the chemiluminescence of the luminol-H2O2 in alkaline buffer Tris-HCl, pH=8.5 has been evidenced. It was found out that α, β, γ- cyclodextrin have an antioxidant capacity, probably due to the free radicals (that are generate in the system) encapsulation in the their cavity. This behaviour depends on α, β, γ-cyclodextrin molar ratio; α-cyclodextrin and γ-cyclodextrin protects more efficiently against free radicals than β-cyclodextrin. These findings could be very important regarding the oxidative stress process.  相似文献   

2.
Guest–host interactions were examined for neutral diclofenac (Diclo) and Diclofenac sodium (Diclo sodium) with each of the cyclodextrin (CD) derivatives: α-CD, β-CD, γ-CD and 2-hydroxypropyl-β-cyclodextrin (HP-β-CD), all in 0.05 M aqueous phosphate buffer solution adjusted to 0.2 M ionic strength with NaCl at 20 °C, and with β-CD at different pHs and temperatures. The pH solubility profiles were measured to obtain the acid–base ionization constants (pK as) for Diclo in the presence and absence of β-CD. Phase solubility diagrams (PSDs) were also measured and analyzed through rigorous procedures to obtain estimates of the complex formation constants for Diclo/CD and Diclo sodium/CD complexation in aqueous solutions. The results indicate that both Diclo and Diclo sodium form soluble 1:1 complexes with α-, β-, and HP-β-CD. In contrast, Diclo forms soluble 1:1 Diclo/γ-CD complexes, while Diclo sodium forms 1:1 and 2:1 Diclo/γ-CD, but the 1:1 complex saturates at 5.8 mM γ-CD with a solubility product constant (pK sp = 5.5). Therefore, though overall complex stabilities were found to follow the decreasing order: γ-CD > HP-β-CD > β-CD > α-CD, some complex precipitation problems may be faced with aqueous formulations of Diclo sodium with γ-CD, where the overall concentration of the latter exceeds 5.8 mM γ-CD. Both 1H-NMR spectroscopic and molecular mechanical modeling (MM+) studies of Diclo/β-CD indicate the possible formation of soluble isomeric 1:1 complexes in water.  相似文献   

3.
The interaction of Rose Bengal (RB) with hydroxypropyl-α-cyclodextrin (HP-α-CD), hydroxypropyl-β-cyclodextrin (HP-β-CD) and hydroxypropyl-γ-cyclodextrin (HP-γ-CD) has been studied in water and in acetate buffer at pH 4.5 by UV–Vis absorption, fluorescence spectroscopy and Induced Circular Dichroism at 298 K. Evidence of the complex formation between the RB and all HP-CDs have been obtained both in water and in buffer. Binding constants and stoichiometry of RB/HP-CD complexes in water have been determined by applying the modified Benesi-Hildebrand equation to the fluorescence measurements.  相似文献   

4.
Thermodynamic parameters for formation of the inclusion complexes of α-, β- and γ-cyclodextrin (α-, β- and γ-CD) with ibuprofen (BF) in Tris-HCl buffer solutions (pH=7.0) have been determined by isothermal titration calorimetry (ITC) with nanowatt sensitivity, and the inclusion structures have been investigated by using 1H-NMR spectra at 298.15 K. A theoretical study on the inclusion processes between BF and CDs has been performed with the B3LYP/6-31G*//PM3 method in order to investigate the formation mechanism of the inclusion complexes. An analysis of the thermodynamic data indicates that the stoichiometries of α-, β- and γ-CD with BF are all 1:1 and formation of the inclusion complexes α-CD⋅BF and β-CD⋅BF are driven by enthalpy and entropy, whereas formation of γ-CD⋅BF is an entropy driven process. The 1H-NMR spectra provide clear evidence for the inclusion phenomenon, and show that the isobutyl group and aromatic ring of the guest molecule are trapped inside the cavity of the CDs. Theoretical calculations suggest that the complex formed by the BF molecule entering into the cavity of the CD molecule from the wide side is more stable than that from the narrow side.  相似文献   

5.
The extent and mode of solubility enhancement exerted by the cyclodextrins (α-, β-, γ-, and HP-β-CDs) on loratadine (Lort) have been experimentally measured under controlled conditions in buffered aqueous solutions. Rigorous nonlinear regression analysis of the phase solubility diagrams obtained in 0.1 mol⋅L−1 phosphate buffer at pH=7.0 and 25 °C revealed the following: neutral Lort (pK a =4.6) tends to form soluble 1:1 and 1:2 Lort/CD complexes with all four of the examined CDs, where complex stability follows the decreasing order β-CD>HP-β-CD>γ-CD>α-CD. The hydrophobic character of Lort constitutes about 66% of the driving force for complex formation whereas specific interactions contribute 11.2 kJ⋅mol−1 towards the stability of the complexes. Thermodynamic studies showed that Lort/CD complex formation was favored by large enthalpic contributions but was impeded by negative entropic changes. Dissolution studies indicate that the dissolution rate of Lort from the freeze-dried Lort/β-CD complex is significantly higher than that of the corresponding physical mixture. Both DSC studies and molecular mechanical modeling of Lort/β-CD interactions were carried out to explore the possible formation of inclusion complexes.  相似文献   

6.
As one of the newly emerged nanomaterials, graphene quantum dots (GQDs) have shown great application potential as tracking probes and drug carriers in biological areas. The GQDs synthesized via the nitric acid reflux method in this study turned out to quench the fluorescence of human serum albumin (HSA) and gamma globulin (γ-globulin) in two different functional ways. The fluorescence quenching effect of GQDs on HSA is a static pattern and the predominant interaction forces are hydrogen bonds and van der Waals forces. Distinct from HSA, the interaction between GQDs and γ-globulins belongs to dynamic quenching and is driven by electrostatic forces. Ultraviolet–visible (UV–vis) differential spectrometry and transient state fluorescence spectrometry were also utilized to further confirm their quenching types. Also, thermodynamics parameters, the enthalpy change (ΔH) and entropy change (ΔS) of reaction between GQDs and proteins were obtained through a series of calculations from the van’t Hoff equation. Furthermore, the effect of GQDs on the conformational structure of proteins was characterized by synchronous fluorescence spectra (SFS), three-dimensional (3D) fluorescence and circular dichroism (CD) spectra. In addition, the binding mechanism of GQDs with HSA and γ-globulins were proposed based on the obtained experimental results. The research on the reaction between GQDs with HSA and γ-globulins offers promising insight for the further application of nanomaterials in biomedical fields.  相似文献   

7.
In phosphate buffer solution of pH5.4, the interaction of meso-tetrakis(2-thienyl)porphyrin(H2TTP) and Cu-meso-tetrakis(2-thienyl)porphyrin(Cu-TTP) with α-cyclodextrin(α-CD), β-CD, γ-CD, heptakis(2,3,6-tri-O-methyl)-β-CD(TM-β-CD) has been studied by means of UV-vis, fluorescence and 1HNMR spectroscopy, respectively. The H2TTP and Cu-TTP can form 1:2 inclusion complexes with TM-β-CD and 1:1 inclusion complexes with the other three cyclodextrins. In this paper, the inclusion constants (K) of H2TTP and Cu-TTP for the formation of the inclusion complexes have been estimated from the changes of absorbance and fluorescence intensity in phosphate buffer solution. The inclusive capabilities of different kinds of cyclodextrins are compared. The result shows that the inclusion ability of α-CD with H2TTP and Cu-TTP is the strongest among the three native CDs. The inclusion ability of modified β-CD with H2TTP and Cu-TTP is stronger, compared to the native β-CD, which indicates that the capacity matching plays a crucial role in the inclusion procedure except for the hydrophobic effect. In addition 1HNMR spectra supports the inclusion conformation of the TM-β-CD-Cu-TTP inclusion complex, indicating the interaction mechanism of inclusion processes.  相似文献   

8.
High Energy Chemistry - The γ-radiation-induced transformations of α-diols in deaerated aqueous solutions at pH 7 have been studied. The composition and radiation-chemical yields of the...  相似文献   

9.
Triacetyl α-cyclodextrin, triacetyl β-cyclodextrin and triacetyl γ-cyclodextrin were tested as possible hydrophobic carriers to prolong the release of hydrophilic teicoplanin (TCP). Physical–chemical characterization of individual components, drug-carrier physical mixtures at 0.5, 0.67 and 0.75 mass fraction of carrier, and the respective interaction products by kneading or evaporative crystallization under microwave irradiation was carried out using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). In vitro drug release in pH 7.4 phosphate buffer at 37 °C was determined by intrinsic dissolution rate (IDR) measurements on non disintegrating compressed discs. Solid-state interactions of TCP with triacetyl α-cyclodextrin by evaporative crystallization and kneading and with triacetyl β-cyclodextrin by evaporative crystallization (probably resulting in carrier amorphization) were demonstrated. The role of carrier hydrophobicity, carrier mass fraction and preparation method of solid drug-carrier combinations on solid-state drug-carrier interactions and slowing down of TCP release was assessed. Modulation of drug release can be achieved using TCP-triacetyl γ-cyclodextrin combinations at 0.5 mass fraction of carrier.  相似文献   

10.
Drugs with poor water solubility were co-ground with cyclodextrins (CDs) to create nanoparticles with improved solubility characteristics. Indomethacin (IDM), furosemide (FRM) and naproxen (NAP) were co-ground with β-CD at the molar ratio of 2:1 (CD:drug). Co-grinding of a drug with CD resulted in not only the formation of drug nanoparticles but also the solubilization of the drug by inclusion complex formation with CD in aqueous media. The nanoparticle fraction of IDM, and FRM from ground mixtures prepared with β-CD was as high as 60–70% while the solubilization fraction was less than 10%. In contrast, β-CD–NAP ground mixture showed a large fraction, 48%, for drug solubilization and only 4% for nanoparticle formation. Furosemide ground mixtures prepared with α-CD, β-CD and γ-CD showed comparatively high nanoparticle fraction while the solubilization fraction was around 10%. Both the nanoparticle fraction and the solubilization fraction were greater in the IDM–β-CD system than those in γ-CD and α-CD systems. The nanoparticle formation of NAP depended on the types of CD used as a co-grinding additive. Naproxen nanoparticles could be prepared by co-grinding NAP and α-CD, while the solubilization of NAP tended to improve when β-CD or γ-CD was used.  相似文献   

11.
The polarographic reduction potentials were determined by classical polarography, millicoulometry, preparative electrolysis, and cyclical voltammetry, and the course of the electrochemical process for nonquaternized and quaternized pyrophthalones in 20% buffer solutions in aqueous dimethylformamide was studied. In the case of α and γ isomers of pyrophthalones, two-electron irreversible electrical reduction leads to the formation of an indan-1-on-3-yl-1,4-dihydropyridine, which exists in two protolytic forms. The compound was isolated and its structure was proved by means of mass spectrometry. The polarographic reduction of β-pyrophthalones is similar to the electrical reduction of 2-phenylindane-1,3-dione. The tautormeric-protolytic equilibria of quaternized and nonquaternized α-, β-, and γ-pyrophthalones were studied, and it was ascertained that individual tautomeric-protolytic forms participate in the electrochemical process at various pH values. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 2, pp. 218–227, February, 1980. We thank I. B. Mazheika and A. P. Gaukhman for determination of the mass spectra.  相似文献   

12.
The molecular mobility of copolymethacrylate with chromophore-containing chalcone side chains is studied by broadband dielectric spectroscopy. Five regions of dipolar polarization relaxation are identified: namely, γ, β, β1, α, and δ processes. It is shown that γ and β1 processes are related to the local mobility of methylene sequences and ester groups adjoining the backbone, while the α process is associated with the cooperative segmental mobility of the backbone. The β and δ processes are attributed to the mobility of chalcone groups: the local mobility in the glassy state (reorientation relative to the long axis of chromophores) and the cooperative mobility in the rubbery state (reorientation relative to the short axis of chromophores), respectively. The incorporation of 20% chalcone groups does not change the glass-transition temperature but enhances the cooperativity of the α process and intermolecular interactions.  相似文献   

13.
Interactions between CDs with three substituted phenols, paeonol (Pae), acetovanillone (Ace) and 2-hydroxyl-5-methoxy-acetophone (Hma), which are isomers, have been determined by isothermal titration calorimetry (ITC) and 1H NMR in aqueous solution at 298.2 K. Both the binding thermodynamics and 1H NMR spectra show that the interaction between α-cyclodextrin (α-CD) molecule and each guest molecule is extremely weak. The thermodynamic parameters indicate that the binding processes of β-cyclodextrin (β-CD) with the isomers are mainly entropy driven and that β-CD binds with Pae or Ace in 1:1 stoichiometry, whereas with Hma binds in 1:1 and 2:1 stoichiometries. The thermodynamic parameters also suggest that γ-cyclodextrin (γ-CD) binds each isomer in the same 1:1 stoichiometry. The binding processes of Pae and Hma with γ-CD are enthalpy driven whereas Ace with γ-CD is predominantly driven by entropy. The 1H NMR spectra reveal that the three isomers were trapped into the torus cavity of the β-CD molecule from the narrow side during the binding process. Pae penetrates into the γ-CD cavity from the primary rim of the macrocycle whereas Ace does so from the secondary rim, but Hma appears not interact with the internal cavity of γ-CD at all.  相似文献   

14.
Cyclodextrins (CDs) are cyclic oligosaccharides that form inclusion complexes with lipophilic molecules through their hydrophobic central cavity. In this study, the effect of α-CD, hydroxylpropyl-β-CD (HP-β-CD) and mixtures of these two CDs on the aqueous solubility of cyclosporine A (CyA) was investigated. Infrared spectroscopy and thermal analysis were used to confirm CyA-CD complex formation. CyA aqueous solubility was increased by 10 and 80 fold in the presence of α-CD and HP β-CD, respectively. The phase-solubility profile for HP-β-CD was linear while that for α-CD had positive deviation from linearity. In the presence of constant concentration of α-CD (15% w/v), aqueous solubility of CyA was further increased upon addition of HP-β-CD up to a concentration of 20% w/v. At higher HP-β-CD concentrations, aqueous solubility of CyA was observed to decrease. Addition of sodium acetate (up to 5% w/v) to aqueous solutions containing 20% w/v HP-β-CD and increasing concentrations of α-CD resulted in a significant reduction in CyA solubility. Complex formation between CyA and both α-CD and HP-β-CD was confirmed by differential scanning calorimetry (DSC). No significant changes were observed in the IR spectra of either CyA or CD following complex formation suggesting chemical interaction between CyA and the CD was unlikely. Phase-solubility studies showed that α-CD had a much greater effect on the solubility of CyA than HP-β-CD. Addition of HP-β-CD to aqueous solutions of α-CD affected the solubility of CyA in these systems. A mixture of 15% w/v α-CD and 20% w/v HP-β-CD was optimal for increasing aqueous solubility of CyA.  相似文献   

15.
The heats of mixing of aqueous solutions of copper(II) nitrate and sodium alaninate and the heats of dilution of an aqueous solution of sodium alaninate in water-ethanol mixtures were calorimetrically measured at 298.15 K. The enthalpies of transfer of α-alaninate from water into water-alcohol mixtures and the standard molar enthalpies of the reaction of copper(II) complexation with α-alaninate ion in the mixtures under study are calculated. The resulting enthalpy parameters are compared with those of the similar system containing synthetic β-alanine, which was studied earlier.  相似文献   

16.
The interaction of celecoxib (Celox) with cyclodextrins (CDs) has been investigated by phase solubility techniques. In this study, the influences of CD type, pH, buffer type, buffer concentration and temperature on the tendency of Celox to form inclusion complexes with CDs were examined. The tendency of Celox to complex with CDs is in the order HP-β-CD > β-CD > γ-CD > α-CD, where the complex formation constants (K 11) were 1377, 693, 126 and 60 M−1, respectively. Also ionization of the slightly acidic Celox (pK a=9.7) was found to reduce its tendency to complex (i.e., The K 11 values of Celox/β-CD in 0.05 M phosphate buffer were 976 and 210 M−1 for neutral and ionized Celox, respectively). Increasing citrate and phosphate buffer concentration enhances the tendency of ionized Celox to complex with β-CD as a result of a corresponding decrease in the inherent solubility (S 0) of the Celox anion. On the other hand, these two buffers interact differently with neutral Celox and β-CD, where increasing phosphate buffer concentration at low pH enhances the complexation of neutral Celox by lowering S 0, while increasing citrate buffer concentration at low pH reduces complex formation as citrate buffer species, mainly citric acid, act as a solublizer and a competitor for Celox and β-CD. The contribution of Celox hydrophobicity for complex stability constitutes about 77% of the driving force for complex stability. The complex formation of neutral Celox with β-CD (ΔG 0=−28.6 kJ/mol) is driven by both enthalpy (ΔH 0=−21.7 kJ/mol) and entropy (ΔS 0=23.3 J/mol K) changes.  相似文献   

17.
A new computer program has been developed for the calculation of pH, pOH, hydroxide ion concentration m OH, species distribution coefficients i, ionic activity coefficients i ionic strength I, buffer capacity , solubility product K s0, and the two dissociation constants, K b1 and K b2, corresponding, respectively, to first and second dissociation steps of Ca(OH)2 in aqueous solution. Previously developed methodology, for the calculation of pH, i, i I, and parameters of pH buffer solutions, starting from the corresponding acidity constants, has been adapted for the case of aqueous Ca(OH)2 solutions, for which the pertinent stoichiometric relationships are different from those applicable to mixtures of acids and their salts. The results show that, contrary to what is currently assumed, the first dissociation is far from complete. Values are given for the concentrations and activities of species Ca(OH)2(aq), Ca(OH)+(aq), and Ca2+ (aq) in saturated calcium hydroxide solutions at 25°C.  相似文献   

18.
The inclusion complexes of a series of bis-quarternary ammonium surfactants, (C n N)2Cl2 (where n = 12, 14, 16) and sodium bis(2-ethylhexyl) sulfosuccinae (AOT), with α-cyclodextrin (α-CD), β-cyclodextrin (β-CD) and γ-cyclodextrin (γ-CD) in aqueous solutions were investigated by using isothermal titration calorimetry (ITC) at 298.15 K. The stability constants, stoichiometry, and formation enthalpies, entropies and Gibbs energies for the complexes in aqueous solutions have been derived from the calorimetric data. The values of the binding constant, K i , are very large, which indicates that these complexes are quite stable in their aqueous solutions. The enthalpy changes (ΔH ) for all of the inclusion processes are negative, showing that the complex process is enthalpy driven. The entropy effect (TΔS ) is negative, so the inclusion process is entropically unfavorable. The large negative Gibbs energy changes indicate that formation of host-guest inclusion complexes is generally a spontaneous process. The thermodynamic parameters are discussed in the light of the different structures of the host and guest molecules.  相似文献   

19.
A new method of capillary zone electrophoresis (CZE) was established by simultaneous assay of four eremophilenolides, 3β-acetoxy-9β-angeloyloxy-1β,10β-epoxy-8α-hydroxyeremophil-7(11)-en-8β (12)-olide (1), 3β-senecioyloxy -1β,10β-epoxy-8α-hydroxyeremophil-7(11)-en-8β (12)-olide (2), 6α-hydroxy-1β,10β-epoxy-8α-hydroxyeremophil-7(11)-en-8β (12)-olide (3) and 3β-acetoxy- 6β-angeloyloxy-1β,10β-epoxy-8α-hydroxyeremophil-7(11)-en-8β (12)-olide (4) in the Chinese herbal extract from Ligulariopsis shichuana. The optimum buffer system was 20 mM borate buffer (pH 10.00). Voltage was 25 kV and detection at 214 nm. Regression equations revealed linear relationships (correlation coefficients 0.9986, 0.9990, 0.9992 and 0.9995) between the peak area of each compound and its concentration. The relative standard deviations of migration times and peak areas were <1.35 and 3.94% within 1 day, respectively. The effects of several CE parameters on the resolution were studied systematically. The contents of four eremophilenolides in Ligulariopsis shichuana were successfully determined with satisfactory repeatability and recovery.  相似文献   

20.
The UV-vis absorption and the fluorescence emission spectra of novocaine were analysed in aqueous cyclodextrin (CD) solutions. Either the absorbance read at λmax 290 nm or the fluorescence emission intensity at λems 346 nm increase in the presence of both α- and β-CD due to the formation of 1:1 inclusion complexes. The lower polarity of the CD-cavity sensed by the included drug enhances the emitted fluorescence; in fact, the same effect was observed in aqueous mixtures of acetonitrile, dioxane, or dimethylsulfoxide. The inclusion complex formation between the monocation of novocaine and CDs diminishes the electrical conductance of aqueous solutions of novocaine hydrochloride (NoHCl). Both the nitrosation reaction in aqueous acid medium and the ester hydrolysis in alkaline medium are retarded in the presence of CDs. The strongest effect was observed with β-CD as a consequence of the higher stability inclusion complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号