首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proteins "work together" by actually binding to form multicomponent complexes that carry out specific functions. Proteomic analyses based on the mass spectrum are now key methods to determine the components in protein complexes. The protein-protein interaction or functional association may be known to exist among the extracted protein spots while analyzing the proteins on the 2D gel. In this study, we develop an agent-based system, namely AgentMultiProtIdent, which integrated two protein identification tools and a variety of databases storing relations among proteins and used to discover protein-protein interactions and protein functional associations, and identify protein complexes and proteins with multiple peptide mass fingerprints as input. The system takes Multiple Peptide Mass Fingerprints (PMFs) as a whole in the protein complex or protein identification. With the relations among proteins, it may greatly improve the accuracy of identification of protein complexes. Also, possible relationship of the multiple peptide mass fingerprints, such as ontology relation, can be discovered by our system, especially in the identification of protein complexes. The agent-based system is now available on the Web at http://dbms104.csie.ncu.edu.tw/ approximately protein/NEW2/.  相似文献   

2.
The analysis of whole cell or tissue extracts is too complex for current protein identification technology and not suitable for the study of proteins with low copy levels. To concentrate and enrich low abundance proteins, organelle proteomics is a promising strategy. This approach can not only reduce the protein sample complexity but also provide information about protein location in cells, organs, or tissues under analysis. Nano-flow two-dimensional strong-cation exchange chromatography (SCX)-RPLC-ESI-MS/MS is an ideal platform for analyzing organelle extracts because of its advantages of sample non-bias, low amounts of sample required, powerful separation capability, and high detection sensitivity. In this study, we apply nano-scale multidimensional protein identification technology to the analysis of C57 mouse liver nuclear proteins. Organelle isolation has been optimized to obtain highly pure nuclei. Evaluation of nucleus integrity and purity has been performed to demonstrate the effectiveness of the optimized isolation procedure. The extracted nuclear proteins were identified by five independent nano-flow on-line SCX-RPLC-ESI-MS/MS analyses to improve the proteome coverage. Finally, a total of 462 proteins were identified. Corresponding analyses of protein molecular mass and pI distribution and biological function categorization have been undertaken to further validate our identification strategy.  相似文献   

3.
A comprehensive platform that integrates information from the protein and peptide levels by combining various MS techniques has been employed for the analysis of proteins in fully malignant human breast cancer cells. The cell lysates were subjected to chromatofocusing fractionation, followed by tryptic digestion of pH fractions for on-line monolithic RP-HPLC interfaced with linear ion trap MS analysis for rapid protein identification. This unique approach of direct analysis of pH fractions resulted in the identification of large numbers of proteins from several selected pH fractions, in which approximately 1.5 microg of each of the pH fraction digests was consumed for an analysis time of ca 50 min. In order to combine valuable information retained at the protein level with the protein identifications obtained from the peptide level information, the same pH fraction was analyzed using nonporous (NPS)-RP-HPLC/ESI-TOF MS to obtain intact protein MW measurements. In order to further validate the protein identification procedures from the fraction digest analysis, NPS-RP-HPLC separation was performed for off-line protein collection to closely examine each protein using MALDI-TOF MS and MALDI-quadrupole ion trap (QIT)-TOF MS, and excellent agreement of protein identifications was consistently observed. It was also observed that the comparison to intact MW and other MS information was particularly useful for analyzing proteins whose identifications were suggested by one sequenced peptide from fraction digest analysis.  相似文献   

4.
Peroxidation of cellular membrane lipids, rich in polyunsaturated fatty acids, generates electrophilic, α, β-unsaturated aldehydes such as 4-hydroxy-2-nonenal (HNE). HNE is a highly reactive and cytotoxic molecule that can react with the nucleophilic sites in proteins causing posttranslational modification. The identification of protein targets is an important first step; however, quantitative profiling of site-specific modifications is necessary to understand the biological impact of HNE-induced carbonylation. We report a method that uses light (H(12)CHO) and heavy (D(13)CDO) isotopic variant of formaldehyde to differentially label primary amines (N-termini and ε-amino group of lysines) in peptides through reductive methylation and, combined with selective enrichment of modified peptides, permits comparison of the extent of carbonylation in two samples after mixing for simultaneous liquid chromatography-mass spectrometry. Specifically, dimethyl-labeled peptide carbonyls were fractionated from unmodified peptides using solid-phase hydrazide chemistry to immobilize them to porous glass beads and, after removing the unmodified peptides by thoroughly washing the beads, subsequently recover them by acid-catalyzed hydrolysis. The method was developed using HNE-modified synthetic peptides and also showing enrichment from a complex matrix of digested human plasma proteins. Applicability was confirmed using apomyoglobin as an analyte, implicating thereby its potential value to proteome-wide identification and relative quantification of posttranslational protein carbonylation with residue-specific information. Because HNE attachment may not necessarily cause change in protein abundance, this modification-focused quantification should facilitate the characterization of accompanied changes in protein function and, also, provide important insights into molecular signaling mechanisms and a better understanding of cellular processes associated with oxidative stress.  相似文献   

5.
Biological functions in organisms are usually controlled by a set of interacting proteins, and identifying the proteins that interact is useful for understanding the mechanism of the functions. Immunoprecipitation is a method that utilizes the affinity of an antibody to isolate and identify the proteins that have interacted in a biological sample. In this study, the FD‐LC–MS/MS method, which involves fluorogenic derivatization followed by separation and quantification by HPLC and finally identification of proteins by HPLC–tandem mass spectrometry, was used to identify proteins in immunoprecipitated samples, using heat shock protein 90 (HSP90) as a model of an interacting protein in HepaRG cells. As a result, HSC70 protein, which was known to form a complex with HSP90, was isolated, together with three different types of HSP90‐beta. The results demonstrated that the proposed immunoaffinity–FD‐LC–MS/MS method could be useful for simultaneously detecting and identifying the proteins that interact with a certain protein.  相似文献   

6.
A simple, rapid, straightforward and washing/separation free of in-solution digestion method for microwave-assisted tryptic digestion of proteins (cytochrome c, lysozyme and myoglobin) using bare TiO(2) nanoparticles (NPs) prepared in aqueous solution to serve as multifunctional nanoprobes in electrospray ionization mass spectrometry (ESI-MS) was demonstrated. The current approach is termed as 'on particle ionization/enrichment (OPIE)' and it can be applied in ESI-MS, atmospheric pressure-matrix-assisted laser desorption/ionization mass spectrometry (AP-MALDI-MS) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The bare TiO(2) NPs can assist, accelerate and effectively enhance the digestion efficiency, sequence coverage and detection sensitivity of peptides for the microwave-assisted tryptic digestion of proteins in ESI-MS. The reason is attributed to the fact that proteins or partially digested proteins are easily attracted or concentrated onto the surface of TiO(2) NPs, resulting in higher efficiency of digestion reactions in the microwave experiments. Besides, the TiO(2) NPs could act as a microwave absorber to accelerate and enrich the protein fragments in a short period of time (40-60 s) from the microwave experiments in ESI-MS. Furthermore, the bare TiO(2) NPs prepared in aqueous solution exhibit high adsorption capability toward the protein fragments (peptides); thus, the OPIE approach for detecting the digested protein fragments via ESI and MALDI ionization could be achieved. The current technique is also a washing and separation-free technique for accelerating and enriching microwave-assisted tryptic digestion of proteins in the ESI-MS and MALDI-MS. It exhibits potential to be widely applied to biotechnology and proteome research in the near future.  相似文献   

7.
Proteome profiling of crude serum is a challenging task due to the wide dynamic range of protein concentrations and the presence of high‐abundance proteins, which cover >90% of the total protein mass in serum. Peptide fractionation on strong cation exchange, weak anion exchange in the electrostatic repulsion hydrophilic interaction chromatography (ERLIC) mode, RP C18 at pH 2.5 (low pH), fused‐core fluorinated at pH 2.5, and RP C18 at pH 9.7 (high pH) stationary phases resulted in two to three times more identified proteins and three to four times more identified peptides in comparison with 1D nanoChip‐LC–MS/MS quadrupole TOF analysis (45 proteins, 185 peptides). The largest number of peptides and proteins was identified after prefractionation in the ERLIC mode due to the more uniform distribution of peptides among the collected fractions and on the RP column at high pH due to the high efficiency of RP separations and the complementary selectivity of both techniques to low‐pH RP chromatography. A 3D separation scheme combining ERLIC, high‐pH RP, and low‐pH nanoChip‐LC–MS/MS for crude serum proteome profiling resulted in the identification of 208 proteins and 1088 peptides with the lowest reported concentration of 11 ng/mL for heat shock protein 74.  相似文献   

8.
In‐gel digestion of gel‐separated proteins is a major route to assist in proteomics‐based biological discovery, which, however, is often embarrassed by its inherent limitations such as the low digestion efficiency and the low recovery of proteolytic peptides. For overcoming these limitations, many efforts have been directed at developing alternative methods to avoid the in‐digestion. Here, we present a new method for efficient protein digestion and tryptic peptide recovery, which involved electroblotting gel‐separated proteins onto a PVDF membrane, excising the PVDF bands containing protein of interest, and dissolving the bands with pure DMF (≥99.8%). Before tryptic digestion, NH4HCO3 buffer was added to moderately adjust the DMF concentration (to 40%) in order for trypsin to exert its activity. Experimental results using protein standards showed that, due to actions of DMF in dissolving PVDF membrane and the membrane‐bound substances, the proteins were virtually in‐solution digested in DMF‐containing buffer. This protocol allowed more efficient digestion and peptide recovery, thereby increasing the sequence coverage and the confidence of protein identification. The comparative study using rat hippocampal membrane‐enriched sample showed that the method was superior to the reported on‐membrane tryptic digestion for further protein identification, including low abundant and/or highly hydrophobic membrane proteins.  相似文献   

9.
Chmelík J  Mazanec K  Slais K 《Electrophoresis》2007,28(18):3315-3323
A new proteomic staining-free method for simultaneous identification of proteins and determination of their pI values by using low-molecular-mass pI markers is described. It is based on separation of proteins in gels by IEF in combination with mass spectrometric analysis of both peptides derived by in-gel digestion and low-molecular-mass pI markers extracted form the same piece excised from the gel. In this method, the pI markers are mixed with a protein mixture (a commercial malted barley protein extract) deposited on a gel and separated in a pH gradient. Color pI markers enable supervision of progress of focusing process. Several separated bands of the pI markers (including separated proteins) were excised and the pI markers were eluted from each gel piece by water/ethanol and identified by MALDI-TOF/TOF MS. The remaining carrier ampholytes were then washed out from gel pieces and proteins were in-gel digested with trypsin or chymotrypsin. Obtained peptides were measured by MALDI-TOF/TOF MS and proteins were identified via protein database search. This procedure allows omitting time-consuming protein staining and destaining procedures, which shortens the analysis time. For comparison, other IEF gels were stained with CBB R 250 and proteins in the gel bands were identified. Similarity of the results confirmed that our approach can give information about the correct pI values of particular proteins in complex samples at significantly shorter analysis times. This method can be very useful for identification of proteins and their post-translational modifications in prefractioned samples, where post-translational modifications (e.g., glycation) are frequent.  相似文献   

10.
Patients with cancer produce specific autoantibodies against protein antigens present in limited amount among a large background of immunoglobulins (Igs), nonrelevant as biomarkers, including natural antibodies. Multiple affinity protein profiling (MAPPing) that combines 2-D immunoaffinity chromatography, enzymatic digestion of the isolated proteins, and identification by MS/MS, may facilitate the identification of these so far unknown patient antibodies. The first immunoaffinity chromatography is crucial, as it is used for selectively removing proteins (autoantigens) recognized by natural antibodies. Application of this depletion step to colon cancer cell proteins is specifically described along with the identification of the natural autoantigens, as well as the coupling of this depletion step with the next steps. By enabling to separate antibody-binding proteins recognized by either natural autoantibodies or patient-specific antibodies this approach may contribute significantly towards the definition of autoantibody signatures.  相似文献   

11.
Mass Spectrometry (MS) allows the analysis of proteins and peptides through a variety of methods, such as Electrospray Ionization-Mass Spectrometry (ESI-MS) or Matrix-Assisted Laser Desorption Ionization-Mass Spectrometry (MALDI-MS). These methods allow identification of the mass of a protein or a peptide as intact molecules or the identification of a protein through peptide-mass fingerprinting generated upon enzymatic digestion. Tandem mass spectrometry (MS/MS) allows the fragmentation of proteins and peptides to determine the amino acid sequence of proteins (top-down and middle-down proteomics) and peptides (bottom-up proteomics). Furthermore, tandem mass spectrometry also allows the identification of post-translational modifications (PTMs) of proteins and peptides. Here, we discuss the application of MS/MS in biomedical research, indicating specific examples for the identification of proteins or peptides and their PTMs as relevant biomarkers for diagnostic and therapy.  相似文献   

12.
It has been known that the over-expression of alpha-synuclein, the main protein of Lewy bodies in Parkinson's disease (PD), leads to neurodegeneration in PD models. In this study, the changes in protein expression between the transgenic over-expressing human alpha-synuclein wild type (alpha-synWT) and the control Caenorhabditis elegans were elucidated by fluorogenic derivatization-liquid chromatography/tandem mass spectrometry (FD-LC-MS/MS) proteome analysis, which is a highly selective, sensitive, repeatable and quantitative method for protein identification. Because the alpha-synuclein wild-type worms showed moderate levels of dopamine loss without overt behavioral abnormalities, it was suggested that the changes in proteins in the alpha-synWT are related in the sequence of the formation of Lewy bodies. Among more than 400 protein peaks detected, actin and several ribosomal proteins were identified for the first time as negative markers at early PD stages. Actin was suggested to be one of the important targets in the elucidation of the etiology of neuronal diseases such as PD or other synucleinopathies.  相似文献   

13.
A unique peptide based search algorithm for identification of protein mixture using PMF is proposed. The proposed search algorithm utilizes binary search and heapsort programs to generate frequency chart depicting the unique peptides corresponding to all proteins in a proteome. The use of binary search program significantly reduces the time for frequency chart preparation to ~2 s for a proteome comprising ~23 000 proteins. The algorithm was applied to a three‐protein mixture identification, host cell protein (HCP) analysis, and a simulation‐generated data set. It was found that the algorithm could identify at least one unique peptide of a protein even in the presence of fourfold higher concentration of another protein. In addition, two HCPs that are known to be difficult to remove were missed by MS/MS approach and were exclusively identified using the presented algorithm. Thus, the proposed algorithm when used along with standard proteomic approaches present avenues for enhanced protein identification efficiency, particularly for applications such as HCP analysis in biopharmaceutical research, where identification of low‐abundance proteins are generally not achieved due to dynamic range limitations between the target product and HCPs.  相似文献   

14.
To improve the efficiency of proteome analysis, a strategy with the combination of protein pre-fractionation by preparative microscale solution isoelectric focusing, peptide separation by μRPLC with serially coupled long microcolumn and protein identification by ESI-MS/MS was proposed. By preparative microscale solution isoelectric focusing technique, proteins extracted from whole cell lysates of Escherichia coli were fractionated into five chambers divided by isoelectric membranes, respectively with pH range from 3.0 to 4.6, 4.6 to 5.4, 5.4 to 6.2, 6.2 to 7.0 and 7.0 to 10.0. Compared to the traditional on-gel IFF, the protein recovery could be obviously improved to over 95%. Subsequently, the enriched and fractionated proteins in each chamber were digested, and further separated by a 30-cm long serially coupled RP microcolumn. Through the detection by ESI-MS/MS, about 200 proteins were identified in each fraction, and in total 835 proteins were identified even with one-dimensional μRPLC-MS/MS system. All these results demonstrate that by such a combination strategy, highly efficient proteome analysis could be achieved, not only due to the in-solution protein enrichment and pre-fractionation with improved protein recovery but also owing to the increased separation capacity of serially coupled long μRPLC columns.  相似文献   

15.
Although the proteome of each organism is unambiguously coded in its genome, the proteome shows the real biology in action in each particular organism. New powerful tools are being developed for biochemists and biologists to analyze complex biological samples for studying the complete protein supplement of the genome, i. e., the proteome. There are several methods available for proteome analysis including 2-DE and several forms of MS. In recent years, technologies such as microfluidics and array-based systems have appeared in the field of analysis, identification, and quantification of proteins. These novel approaches might help in solving current technical challenges in proteomics. This paper presents a practical application of the first commercially available microfluidic nano-ESI device coupled with nano-LC (i. e., HPLC-chip) for the analysis of samples of some biological protein mixtures.  相似文献   

16.
Recently, matrix-assisted laser desorption ionization (MALDI) technique has been shown to be complementary to electrospray ionization (ESI) with respect to the population of peptides and proteins that can be detected. In this study, we tried to hyphenate MALDI-TOF-TOF-MS and ESI-QUADRUPOLE-TOF-MS with a single 2D liquid chromatography for complicated protein sample analysis. The effluents of RPLC were split into two parts for the parallel MS/MS detection. After optimizing the operation conditions in LC separation and MS identification, a total of 1149 proteins were identified from the global lysate of normal human liver (NHL) tissue. Compared to the single MS/MS detection, the combined analysis increased the number of proteins identified (more than 25%) and enhanced the protein identification confidence. Proteins identified were categorized and analyzed based upon their cellular location, biological process and molecular function. The identification results demonstrated the application potential of a parallel MS/MS analysis coupled with multi-dimensional LC separation for complicated protein sample identification, especially for proteome analysis, such as human tissues or cells extracts.  相似文献   

17.
Comprehensive proteomic analyses necessitate efficient separation of peptide mixtures for the subsequent identification of proteins by mass spectrometry (MS). However, digestion of proteins extracted from cells and tissues often yields complex peptide mixtures that confound direct comprehensive MS analysis. This study investigated a zwitterionic hydrophilic interaction liquid chromatography (ZIC‐HILIC) technique for the peptide separation step, which was verified by subsequent MS analysis. Human serum albumin (HSA) was the model protein used for this analysis. HSA was digested with trypsin and resolved by ZIC‐HILIC or conventional strong cation exchange (SCX) prior to MS analysis for peptide identification. Separation with ZIC‐HILIC significantly improved the identification of HSA peptides over SCX chromatography. Detailed analyses of the identified peptides revealed that the ZIC‐HILIC has better peptide fractionation ability. We further demonstrated that ZIC‐HILIC is useful for quantitatively surveying cell surface markers specifically expressed in undifferentiated embryonic stem cells. These results suggested the value of ZIC‐HILIC as a novel and efficient separation method for comprehensive and quantitative proteomic analyses. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Manabe T  Jin Y  Tani O 《Electrophoresis》2007,28(5):843-863
Human plasma proteins were separated by 2-DE under nondenaturing conditions followed by the assignment of the CBB-stained spots using MALDI-MS and PMF, aiming to correlate the information of intact proteins with that of constituent polypeptides. A microgel system was employed to facilitate the analysis. Totally 157 spots on a nondenaturing micro-2-DE gel were numbered, the spots were excised, the proteins in the gel pieces were subjected to in-gel digestion with trypsin followed by polypeptide analysis using MALDI-MS and PMF. Two PMF algorithms, MASCOT (with Swiss-Prot database) and ProFound (with NCBInr database) were employed. A total of 153 spots out of the 157 provided significant match (p <0.05) with polypeptides in databases. Eighty spots were assigned to contain multiple (2-4) polypeptides, suggesting (i) noncovalent interaction between proteins/polypeptides, (ii) disulfide bonding of polypeptides, or (iii) overlapping of the protein locations on the gel. The results of polypeptide assignment coincided very well with the results of protein mapping previously reported, in which 33 plasma proteins were identified using blotting-immunochemical staining (Manabe, T., Takahashi, Y., Higuchi, N., Okuyama, T., Electrophoresis 1985, 6, 462-467). Further, 19 polypeptides in 25 spots were newly assigned. These results demonstrate that the techniques of MALDI-MS and PMF can be applied for analysis of proteins separated on nondenaturing 2-DE gels, providing information on their polypeptide structure. The integrated information on proteins and polypeptides would help the comprehensive understanding on the functions of complex protein systems.  相似文献   

19.
Analysis of secretory proteins is an important area in proteomic research. We propose that a good secretory protein sample should be enriched with known secretory proteins, and a secretory protein should be enriched in the secretory protein sample compared with its corresponding soluble cell lysate. Positive identifications of proteins were subjected to quantitation of spectral counts, which reflect relative protein abundance. Enrichment index of the sample (EIS) and the enrichment index for protein (EIP) were obtained by comparing proteins identified in the secretory protein sample and those in the soluble cell lysate sample. The quality of the secretory protein sample can be represented by EIS. EIP was used to identify the secretory proteins. The secretory proteins from mouse dendritic cell sarcoma (DCS) were analyzed by MS. The EISs of two samples were 75.4 and 84.65, respectively. 72 proteins were significantly enriched in secretory protein samples, of which 42 proteins were either annotated in Swiss‐Prot and/or predicted by signal peptides to be secretory. In the remaining 30 proteins, 12 and 15 proteins were positively predicted by SecretomeP and ProP, respectively, and 5 proteins were positive by both methods. Furthermore, 11 proteins were found to be present in exosome in other studies that involved mice dendritic cell lines. We suggest that this assessment method is helpful for systemic research of secretory proteins and biomarker discovery for diseases such as cancer. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
With advancements in ionization methods and instrumentation, liquid chromatography/mass spectrometry (LC/MS) has become a powerful technology for the characterization of small molecules and proteins. This article will illustrate the role of LC/MS analysis in drug discovery process. Examples will be given on high-throughput analysis, structural analysis of trace level impurities in drug substances, identification of metabolites, and characterization of therapeutic protein products for process improvement. Some unique MS techniques will also be discussed to demonstrate their effectiveness in facilitating structural identifications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号