首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Techniques in mass spectrometry (MS) combined with chemical cross-linking have proven to be efficient tools for the rapid determination of low-resolution three-dimensional (3-D) structures of proteins. The general procedure involves chemical cross-linking of a protein followed by enzymatic digestion and MS analysis of the resulting peptide mixture. These experiments are generally fast and do not require large quantities of protein. However, the large number of peptide species created from the digestion of cross-linked proteins makes it difficult to identify relevant intermolecular cross-linked peptides from MS data. We present a method for mapping low-resolution 3-D protein structures by combining chemical cross-linking with high-resolution FTICR (Fourier transform ion-cyclotron resonance) mass spectrometry using cytochrome c and hen egg lysozyme as model proteins. We applied several homo-bifunctional, amine-reactive cross-linking reagents that bridge distances from 6 to 16 A. The non-digested cross-linking reaction mixtures were monitored by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) to determine the extent of cross-linking. Enzymatically digested reaction mixtures were separated by nano-high-performance liquid chromatography (nano-HPLC) on reverse-phase columns applying water/acetonitrile gradients with flow rates of 200 nL/min. The nano-HPLC system was directly coupled to an FTICR mass spectrometer equipped with a nano-ESI (electrospray ionization) source. Cross-linking products were identified using a combination of the GPMAW software and ExPASy Proteomics tools. For correct assignment of the cross-linking products the key factor is to rely on a mass spectrometric method providing both high resolution and high mass accuracy, such as FTICRMS. By combining chemical cross-linking with FTICRMS we were able to rapidly define several intramolecular constraints for cytochrome c and lysozyme.  相似文献   

2.
Chemical cross-linking--an established technique in protein chemistry--has re-emerged, in combination with mass spectrometric analysis of the reaction products, as a valuable tool to identify interacting amino acid sequences in protein complexes. In the present study, we are mapping the interface of the calcium-dependent complex between calmodulin (CaM) and a peptide derived from the C-terminal region of adenylyl cyclase 8 (AC 8). Cross-linking reactions are performed using the two amine-reactive, isotope-labeled (d0 and d4) cross-linkers BS(3) (bis[sulfosuccinimidyl]suberate) and BS(2)G (bi[sulfosuccinimidyl] glutarate) as well as the 'zero-length' cross-linker (EDC, ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride). After separation of the cross-linking reaction mixtures by one-dimensional gel electrophoresis (sodium dodecyl sulphate polyacrylamide gel) and in-gel digestion of the cross-linked complexes, the resulting peptide mixtures are analyzed by nano-high-performance liquid chromatography/ nano-electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. The identified intermolecular cross-linking products will give further insight into calmodulin/adenylyl cyclase 8 interaction.  相似文献   

3.
Protein-protein interaction is one of the key regulatory mechanisms for controlling protein function in various cellular processes. Chemical cross-linking coupled with mass spectrometry has proven to be a powerful method not only for mapping protein-protein interactions of all natures, including weak and transient ones, but also for determining their interaction interfaces. One critical challenge remaining in this approach is how to effectively isolate and identify cross-linked products from a complex peptide mixture. In this work, we have developed a novel strategy using conjugation chemistry for selective enrichment of cross-linked products. An azide-tagged cross-linker along with two biotinylated conjugation reagents were designed and synthesized. Cross-linking of model peptides and cytochrome c as well as enrichment of the resulting cross-linked peptides has been assessed. Selective conjugation of azide-tagged cross-linked peptides has been demonstrated using two strategies: copper catalyzed cycloaddition and Staudinger ligation. While both methods are effective, Staudinger ligation is better suited for enriching the cross-linked peptides since there are fewer issues with sample handling. LC MSn analysis coupled with database searching using the Protein Prospector software package allowed identification of 58 cytochrome c cross-linked peptides after enrichment and affinity purification. The new enrichment strategy developed in this work provides useful tools for facilitating identification of cross-linked peptides in a peptide mixture by MS, thus presenting a step forward in future studies of protein-protein interactions of protein complexes by cross-linking and mass spectrometry.  相似文献   

4.
The concept of protein cross-linking in combination with mass spectrometry holds great promise to derive structural information on protein conformation and protein-protein interactions. We recently presented a dissociative amine-reactive cross-linker (NHS-BuUrBu-NHS) that is shown herein to be universally applicable to protein structure analysis under matrix-assisted laser desorption/ionization tandem mass spectrometric (MALDI-MS/MS) conditions, based on the examples of the peptides substance P, luteinizing hormone releasing hormone (LHRH), and the 32-kDa ligand-binding domain of peroxisome proliferator-activated receptor alpha (PPARα). The characteristic fragment ion patterns and constant neutral losses of the cross-linker greatly simplify the identification of different cross-linked species from complex mixtures and drastically reduce the potential of identifying false-positive cross-links. Therefore, this cross-linker holds an enormous potential for deriving structural information of proteins and protein complexes in a highly automated fashion.  相似文献   

5.
Chemical cross-linking of proteins, an established method in protein chemistry, has gained renewed interest in combination with mass spectrometric analysis of the reaction products for elucidating low-resolution three-dimensional protein structures and interacting sequences in protein complexes. The identification of the large number of cross-linking sites from the complex mixtures generated by chemical cross-linking, however, remains a challenging task. This review describes the most popular cross-linking reagents for protein structure analysis and gives an overview of the strategies employing intra- or intermolecular chemical cross-linking and mass spectrometry. The various approaches described in the literature to facilitate detection of cross-linking products and also computer software for data analysis are reviewed. Cross-linking techniques combined with mass spectrometry and bioinformatic methods have the potential to provide the basis for an efficient structural characterization of proteins and protein complexes.  相似文献   

6.
Bacillus subtilis synthesizes the lanthionine containing 32-amino-acid peptide antibiotic (lanti-biotic) subtilin from a ribosomally generated 56-amino-acid precursor pre-propeptide by extensive posttranslational modifications. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) was used to monitor the production of matured subtilin within crude samples taken from B. subtilis culture media without prior fractionation. The processing reaction of subtilin was blocked with the serine protease inhibitor phenylmethylsulfonyl fluoride and different subtilin precursor peptides in the molecular mass range up to 6220 were observed. Two of these species were isolated by reversed-phase high-performance liquid chromatography (HPLC) and structurally analyzed by post-source decay MALDI-TOFMS. We provide evidence that the precursor species comprise the posttranslational modified C-terminal part of subtilin to which leader peptide moieties with different chain lengths are attached. These antimicrobial-inactive species could be processed to antibiotic-active subtilin by incubation with culture media of different subtilin-nonproducing B. subtilis strains as indicated by a combination of antimicrobial growth assays and MALDI-TOFMS analyses. These achievements are strong evidence for the sensitivity of MALDI-TOFMS methodology that allows straightforward investigations of analytes even in complex mixtures without time-consuming sample preparations.  相似文献   

7.
Mass spectrometry (MS) together with genome database searches serves as a powerful tool for the identification of proteins. In proteome analysis, mixtures of cellular proteins are usually separated by sodium dodecyl sulfate (SDS) polyacrylamide gel-based two-dimensional gel electrophoresis (2-DE) or one-dimensional gel electrophoresis (1-DE), and in-gel digested by a specific protease. In-gel protein digestion is one of the critical steps for sensitive protein identification by these procedures. Efficient protein digestion is required for obtaining peptide peaks necessary for protein identification by MS. This paper reports a remarkable improvement of protein digestion in SDS polyacrylamide gels using an acid-labile surfactant, sodium 3-[(2-methyl-2-undecyl-1,3-dioxolan-4-yl)methoxy]-1-propanesulfonate (ALS). Pretreatment of gel pieces containing protein spots separated by 2-DE with a small amount of ALS prior to trypsin digestion led to increases in the digested peptides eluted from the gels. Consistently, treatment of gel pieces containing silver-stained standard proteins and those separated from tissue extracts resulted in the detection of increased numbers of peptide peaks in spectra obtained by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOFMS). Hence the present protocol with ALS provides a useful strategy for sensitive protein identification by MS.  相似文献   

8.
Chemical cross-linking combined with mass spectrometry (MS) is an analytical tool used to elucidate the topologies of proteins and protein complexes. However, identification of the low abundance cross-linked peptides and modification sites amongst a large quantity of proteolytic fragments remains challenging. In this work, we present a strategy to identify cross-linked peptides by negative ion MS for the first time. This approach is based around the facile cleavages of disulfide bonds in the negative mode, and allows identification of cross-linked products based on their characteristic fragmentations. MS(3) analysis of the cross-linked peptides allows for their sequencing and identification, with residue specific location of cross-linking sites. We demonstrate the applicability of the commercially available cystine based cross-linking reagent dithiobis(succinimidyl) propionate (DSP) and identify cross-linked peptides from ubiquitin. In each instance, the characteristic fragmentation behavior of the cross-linked species is described. The data presented here indicate that this negative ion approach may be a useful tool to characterize the structures of proteins and protein complexes, and provides the basis for the development of high throughput negative ion MS chemical cross-linking strategies.  相似文献   

9.
The Maillard reaction occurring between sugars and amino groups is important in living systems. When amino groups belonging to protein chains are involved, the Maillard reaction has been invoked as responsible for protein cross-linking and the production of 'toxic' compounds. The reaction leads to the production of a heterogeneous group of substances, usually called advanced glycation end products (AGEs). Classical analytical approaches, such as spectroscopic (ultraviolet, fluorescence) and mass spectrometric (matrix-assisted laser desorption/ionization, liquid chromatography/electrospray ionization mass spectrometry) methods, have shown that the digestion mixture is highly complex. However, there are clear differences between the digestion mixtures of glycated and unglycated human serum albumin (HSA). In the former case, possible glycated peptides belonging to the AGE peptide class may be identified. Tandem mass spectrometric experiments on selected species seemed to be promising as regards structural information, but it was thought of interest to undertake the present investigation, based on liquid chromatography/electrospray ionization Fourier transform mass spectrometry, in order to obtain definitive results on their elemental composition. Using this approach, about 20 glycated peptides were detected and their possible structures were postulated by examining the known sequence of HSA.  相似文献   

10.
Shiau KJ  Hung SU  Lee HW  Wu CC 《The Analyst》2011,136(9):1922-1927
Simultaneous detection of multiply and singly phosphorylated peptides using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is challenging because of suppression effects during ionization. In oder to overcome this problem, this study presents a new approach to improve the detection of phosphopeptides by stepwise enrichment using polyarginine-coated (PA-coated) and titanium dioxide-coated (TiO(2)-coated) nanodiamonds for fractionation of multiply and singly phosphorylated peptides prior to on-probe MALDI MS analysis. The feasibility of this approach was demonstrated using synthetic peptides containing different numbers of phosphate groups, tryptic digests of α-casein, β-casein, and complex protein mixtures. The high specificity of the approach is shown in its effective enrichment and fractionation of phosphopeptides from the digest of β-casein and bovine serum albumin at a molar ratio as low as 1 : 1000, which out-performs the commercial Fe(3+)-IMAC and TiO(2) isolation kits. It offers a simple and effective alternative for the fractionation and identification of multiply and singly phosphorylated peptides by MALDI MS and allows for deduction of more information from limited starting materials.  相似文献   

11.
An analytical strategy for the analysis of antigen epitopes by chemical cross-linking and mass spectrometry is demonstrated. The information of antigen peptides involved in the binding to an antibody can be obtained by monitoring the antigen peptides modified by a partially hydrolyzed cross-linker in the absence and in the presence of an antibody. This approach was shown to be efficient for characterization of the epitope on bovine prion protein bPrP(25-241) specifically recognized by a monoclonal antibody, 3E7 (mAb3E7), with only a small amount of sample (200 picomoles) needed. After cross-linking of the specific immuno complex, a matrix-assisted laser desorption/ionization (MALDI) mass spectrometer equipped with an ion conversion dynode (ICD) high-mass detector was used to optimize the amount of cross-linked complex formed at 202 kDa before proteolytic digestion. To identify the cross-linked peptides after proteolysis without ambiguity, isotope-labeled cross-linkers, disuccinimidyl suberate (DSS-d0/d12) and disuccinimidyl glutarate (DSG-d0/d6), together with high-resolution Fourier transform ion-cyclotron resonance mass spectrometry (FTICR-MS) were used. As a result, a complete fading of the peak intensities corresponding to the peptides representing the epitope was observed when bPrP/mAb3E7 complexes were formed.  相似文献   

12.
Tyrosinase-induced oxidation of tyrosine is known to lead to melanin by cross-linking of 5,6-dihydroxyindole (DHI) and indole-5,6-quinone intermediates. However, tyrosinase-induced cross-linking of tyrosine-containing peptides has not been reported. We observed tyrosinase-induced adducts of tyrosine-containing peptides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). MALDI-TOFMS was also used to observe tyrosine adducts at various levels of oxidation derived from acid hydrolysis of the peptide adducts. The rate of tyrosinase-induced browning of lys-tyr-lys was about half of that of tyrosine. These results indicate that tyrosinase-induced browning of tyrosine-containing peptides via direct oxidation and cross-linking of the benzene ring of the tyrosine residue occurs at a significant rate and needs to be considered in melanogenesis.  相似文献   

13.
Chemical cross-linking mass spectrometry (CXMS) has emerged as a powerful technology to analyze protein complexes. However, the progress of in vivo CXMS studies has been limited by cross-linking biocompatibility and data analysis. Herein, a glycosidic bond-based MS-cleavable cross-linker of trehalose disuccinimidyl ester (TDS) was designed and synthesized, which was fragmented in MS under CID/HCD to simplify the cross-linked peptides into conventional single peptides via selective cleavage between glycosidic and peptide bonds under individual MS collision energy. Consequently, the cross-linking identification accuracy and throughput were significantly enhanced, and the popular MS mode of stepped HCD was allowed. In addition, TDS showed proper cell-penetrating properties while being highly water-soluble, making it non-DMSO dependent during solubilization. Collectively, TDS provides a promising toolkit for CXMS characterization of living systems with high biocompatibility and accuracy.  相似文献   

14.
For structural studies of proteins and their complexes, chemical cross-linking combined with mass spectrometry presents a promising strategy to obtain structural data of protein interfaces from low quantities of proteins within a short time. We explore the use of isotope-labeled cross-linkers in combination with Fourier transform ion cyclotron resonance (FTICR) mass spectrometry for a more efficient identification of cross-linker containing species. For our studies, we chose the calcium-independent complex between calmodulin and a 25-amino acid peptide from the C-terminal region of adenylyl cyclase 8 containing an "IQ-like motif." Cross-linking reactions between calmodulin and the peptide were performed in the absence of calcium using the amine-reactive, isotope-labeled (d0 and d4) cross-linkers BS3 (bis[sulfosuccinimidyl]suberate) and BS2G (bis[sulfosuccinimidyl]glutarate). Tryptic in-gel digestion of excised gel bands from covalently cross-linked complexes resulted in complicated peptide mixtures, which were analyzed by nano-HPLC/nano-ESI-FTICR mass spectrometry. In cases where more than one reactive functional group, e.g., amine groups of lysine residues, is present in a sequence stretch, MS/MS analysis is a prerequisite for unambiguously identifying the modified residues. MS/MS experiments revealed two lysine residues in the central alpha-helix of calmodulin as well as three lysine residues both in the C-terminal and N-terminal lobes of calmodulin to be cross-linked with one single lysine residue of the adenylyl cyclase 8 peptide. Further cross-linking studies will have to be conducted to propose a structural model for the calmodulin/peptide complex, which is formed in the absence of calcium. The combination of using isotope-labeled cross-linkers, determining the accurate mass of intact cross-linked products, and verifying the amino acid sequences of cross-linked species by MS/MS presents a convenient approach that offers the perspective to obtain structural data of protein assemblies within a few days.  相似文献   

15.
Formaldehyde cross-linking of proteins is emerging as a novel approach to study protein-protein interactions in living cells. It has been shown to be compatible with standard techniques used in functional proteomics such as affinity-based protein enrichment, enzymatic digestion, and mass spectrometric protein identification. So far, the lack of knowledge on formaldehyde-induced protein modifications and suitable mass spectrometric methods for their targeted detection has impeded the identification of the different types of cross-linked peptides in these samples. In particular, it has remained unclear whether in vitro studies that identified a multitude of amino acid residues reacting with formaldehyde over the course of several days are suitable substitutes for the much shorter reaction times of 10-20 min used in cross-linking experiments in living cells. The current study on model peptides identifies amino-termini as well as lysine, tryptophan, and cysteine side chains, i.e. a small subset of those modified after several days, as the major reactive sites under such conditions, and suggests relative position in the peptide sequence as well as sequence microenvironment to be important factors that govern reactivity. Using MALDI-MS, mass increases of 12 Da on amino groups and 30 Da on cysteines were detected as the major reaction products, while peptide fragment ion analysis by tandem mass spectrometry was used to localize the actual modification sites on a peptide. Non-specific cross-linking was absent, and could only be detected with low yield at elevated peptide concentrations. The detailed knowledge on the constraints and products of the formaldehyde reaction with peptides after short incubation times presented in this study is expected to facilitate the targeted mass spectrometric analysis of proteins after in vivo formaldehyde cross-linking.  相似文献   

16.
Multidimensional high-performance liquid chromatography (HPLC) is a key method in shotgun proteomics approaches for analyzing highly complex protein mixtures by complementary chromatographic separation principles. Here, we describe an integrated 3D-nano-HPLC/nano-electrospray ionization quadrupole time-of-flight mass spectrometry system that allows an enzymatic digestion of proteins followed by an enrichment and subsequent separation of the created peptide mixtures. The online 3D-nano-HPLC system is composed of a monolithic trypsin reactor in the first dimension, a monolithic affinity column with immobilized monomeric avidin in the second dimension, and a reversed phase C18 HPLC-Chip in the third dimension that is coupled to a nano-ESI-Q-TOF mass spectrometer. The 3D-LC/MS setup is exemplified for the identification of biotinylated proteins from a simple protein mixture. Additionally, we describe an online 2D-nano-HPLC/nano-ESI-LTQ-Orbitrap-MS/MS setup for the enrichment, separation, and identification of cross-linked, biotinylated species from chemical cross-linking of cytochrome c and a calmodulin/peptide complex using a novel trifunctional cross-linker with two amine-reactive groups and a biotin label.
Figure
Schematic representations of the online 3D-nano-HPLC/nano-ESI-Q-TOF-MS/MS setup; LP loading pump, NP nano-pump  相似文献   

17.
Complex III of the mitochondrial electron transport chain, ubiquinol-cytochrome c reductase, was isolated by blue native polyacrylamide gel electrophoresis. Ten of the 11 polypeptides present in this complex were detected directly by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) following electroelution of the active complex. Tryptic and chymotryptic digestion of the complex permit the identification of specific peptides from all of the protein subunits with 70% coverage of the 250 kDa complex. The mass of all 11 proteins was confirmed by second dimension Tricine sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and elution of the separated polypeptides. Additionally, the identity of the core I, core II, cytochrome c and the Rieske iron-sulfur protein were confirmed by liquid chromatography/tandem mass spectrometry (LC/MS/MS) characterization of the peptides generated by in-gel trypsin digestion of the SDS-PAGE separated proteins. The methodology demonstrated for analyzing this membrane-bound electron transport complex should be applicable to other membrane complexes, particularly the other mitochondrial electron transport complexes. The MS analysis of the peptides obtained by in-gel digestion of the intact complex permits the simultaneous characterization of the native proteins and modifications that contribute to mitochondrial deficits that have been implicated as contributing to pathological conditions.  相似文献   

18.
High-sensitivity, high-throughput analysis of proteins for proteomics studies is usually performed by polyacrylamide gel electrophoresis in combination with mass spectrometry. However, the quality of the data obtained depends on the in-gel digestion procedure employed. This work describes an improvement in the in-gel digestion efficiency for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) analysis. A dramatic improvement in the coverage of tryptic peptides was observed when n-octyl glucoside was added to the buffer. Whole cell extracted proteins from S. cerevisiae were separated by two-dimensional gel electrophoresis and stained with silver. Protein spots were identified using our improved in-gel digestion method and MALDI-TOFMS. In addition, the mass spectra obtained by using the matrix alpha-cyano-4-hydroxycinnamic acid (CHCA) were compared with those obtained using 2,5-dihydroxybenzoic acid (DHB). The DHB matrix usually gave more peaks, which led to higher sequence coverage and, consequently, to higher confidence in protein identification. This improved in-gel digestion protocol is simple and useful for protein identification by MALDI-TOFMS.  相似文献   

19.
High-sensitivity, rapid identification of proteins in proteomic studies normally uses a combination of one- or two-dimensional electrophoresis together with mass spectrometry. The simplicity and sensitivity of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) have increased its application in recent years. The most common method of 'peptide fingerprinting' often may not provide robust identification. Normally additional sequence information by post-source decay (PSD) MALDI-TOFMS provides additional constraints for database searches to achieve highly confident results. Here we describe a derivatization procedure to facilitate the acquisition of such sequence information. Peptide digests from a skin-expressed protein were modified with 4-sulfophenyl isothiocyanate. The resulting peptides carry a fixed negative charge at the N-terminal end and the resulting PSD spectrum is dominated by C-terminal y-type ions. The sequence information in most cases can be obtained manually or with simple programming tools. Methods of optimizing the procedure and increasing the sensitivity are discussed.  相似文献   

20.
In this study, we developed a novel microwave-assisted protein preparation and digestion method for matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry analysis and identification of proteins that involves using conductive carbon tape as a sample platform for sample preparation (reduction and alkylation) and digestion under microwave heating and as a plate for MALDI analysis. This method allows for the enzymatic digestion products of proteins to be directly analyzed by MALDI mass spectrometry and results in a marked reduction in sample loss. Our protocol requires only a small volume (1 μL) of reaction solvent, which increases the frequency of enzyme-to-protein contact, thereby resulting in more efficient digestion of sample than conventional in-solution digestion methods. To test this protocol, we used magnetic iron (II, III) oxide nanoparticles as concentrating probes to enrich phosphopeptides from a mixture of peptides in enzymatically digested protein samples. We found that the one-pot on-tape-based protein preparation and digestion under microwave heating combined with the on-tape-based enrichment method not only dramatically reduced the time required for phosphopeptides analysis but also allowed for the simultaneous identification of phosphoproteins. The advantages of our protocol include ease of use, high digestion efficiency, high specificity, and rapid (15 min) identification of proteins and enrichment of phosphopeptides in a mixture of enzymatically digested protein samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号