首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Metronidazole (MTNZ) is an antiprotozoa drug, could be labeled with the 99mTc. MTZL could be used as an ideal vehicle to deliver radioactive decay energy of 99mTc to the sites of tumor, thus facilitate tumor imaging. The process of labeling was done using tin chloride as reducing agent. The optimum conditions required to label 25 μg MTZL were 100 μg stannous chloride, 30 min reaction time, room temperature at pH 7–9 using 0.5 M phosphate buffer. The radiochemical purity of the labeled compound, at the above conditions, was determined using paper chromatography. The yield was about 93%. About 2.5 × l06 of Ehrlich Ascites Carcinoma (EAC) was injected intrapritoneally (i.p) to produce ascites and intramuscularly (i.m) in the right thigh to produce solid tumor in female mice. Biodistribution studies were carried out by injecting solution of 99mTc-MTZL in normal and tumor bearing mice. The uptake in ascites was over 5% of the injected dose per gram tissue body weight, at 4 h post injection and above 4% in solid tumor. These data revealed localization of the tracer in the tumor tissues with high percentage sufficient to use 99 mTc MTZL as promising tool for diagnosis of tumor.  相似文献   

2.
2,2′-[(8-hydroxyquinolin-7-yl)methylazanediyl]diacetic acid (HQMADA) was synthesized via reaction of 8-hydroxyquinoline with iminodiacetic acid in presence of paraformaldehyde with a yield of 27%. The obtained compound was well characterized via different analytical techniques. Labeling of the synthesized compound with technetium-99m in pertechnetate form (99mTcO4 ) in the presence of stannous chloride dihydrate was carried out via chelation reaction. The reaction parameters that affect the labeling yield such as HQMADA concentration, stannous chloride dihydrate concentration, pH of the reaction mixture, and reaction time were studied to optimize the labeling conditions. Maximum radiochemical yield of 99mTc-HQMADA complex (91.9%) was obtained by using 1.5 mg HQMADA, 50 μg SnCl2·2H2O, pH 8 and 30 min reaction time. Biodistribution studies in mice were carried out in experimentally induced infection in the left thigh using E. coli. 99mTc-HQMADA complex showed higher uptake (T/NT = 5.5 ± 0.3) in the infectious lesion than the commercially available 99mTc-ciprofloxacin (T/NT = 3.8 ± 0.8). Biodistribution studies for 99mTc-HQMADA complex in Albino mice bearing septic and aseptic inflammation models showed that 99mTc-HQMADA complex able to differentiate between septic and aseptic inflammation.  相似文献   

3.
Bombesin (BNN)-like peptides have very high binding affinity for the gastrin-releasing peptide (GRP) receptor. The goal of the current study was to optimize the labeling conditions of a new 99mTc-radiolabeled BNN-like peptide based on the bifunctional chelating ligand HYNIC using different co-ligands (EDDA and tricine). The radiolabeling conditions (pH, amount of co-ligand, amount of stannous chloride, temperature and reaction time) for newly-formed 99mTc-tricine-HYNIC-Q-Litorin and 99mTc-EDDA-HYNIC-Q-Litorin were optimized and evaluated by RHPLC and RTLC. Radiochemical yields for 99mTc-tricine-HYNIC-Q-Litorin and 99mTc-EDDA-HYNIC-Q-Litorin were 98.0 ± 1.7 and 97.5 ± 2.5%, respectively. When EDDA was used as co-ligand, the labeling of 99mTc-EDDA-HYNIC-Q-Litorin was optimal in the following reaction mixture: HYNIC-peptide: EDDA: 10 μg/5 mg, pH 3, SnCl2 concentration: 12 μg/0.1 mL, reaction temperature: 100 °C, reaction time: 15 min. Besides, the optimum conditions were HYNIC-peptide:tricine: 10 μg/50 mg, pH 5, SnCl2 concentration: 12 μg/0.1 mL, reaction temperature: 100 °C, reaction time: 15 min for preparing 99mTc-tricine-HYNIC-Q-Litorin. The manufactured 99mTc-HYNIC-Q-Litorin conjugates may offer new possibilities for imaging cancer cells expressing bombesin receptors.  相似文献   

4.
The dimercaptosuccinic acid metronidazole ester (DMSAMe) was synthesized and radiolabeled with 99mTc to form the 99mTc-DMSAMe complex in high yield. The radiochemical purity of the 99mTc-DMSAMe complex was over 90%, as measured by TLC and by HPLC, without any notable decomposition at room temperature over a period of 6 h. Its partition coefficient indicated that it was a lipophilic complex. The tumor cell experiment and the biodistribution in mice bearing S 180 tumor showed that the 99mTc-DMSAMe complex had a certain hypoxic selectivity and accumulated in the tumor with high uptake and good retention. The tumor/blood and tumor/muscle ratios increased with time, suggesting it would be a possible tumor hypoxia imaging agent.  相似文献   

5.
A novel electrochemical process to avail clinical grade 99mTc from (n,γ)99Mo has been demonstrated. The electrochemical parameters were optimized to maximize the 99mTc yield with minimal 99Mo contamination. 99Mo/99mTc generators containing up to 29.6 GBq (800 mCi) 99Mo were developed and their performance were extensively evaluated for 10 days without changing the operating conditions. Very high radioactive concentration of 99mTcO4 of acceptable quality, commensurate with hospital radiopharmacy requirements could be availed from the system with >90% yield. The compatibility of the product for the formulation of 99mTc labeled radiopharmaceuticals such as 99mTc-DMSA and 99mTc-EC was found to be satisfactory in terms of high labeling yields. The proposed route represents an important step for enhancing the scope of accessing clinical grade 99mTc from low specific activity (n, γ)99Mo.  相似文献   

6.
Summary This investigation focused on the labeling of pefloxacin, a fluoroquinolone antibacterial agent, with 99mTc to form 99mTc-pefloxacin complex. The labeling process was done by direct addition of pertechnetate in isotonic solution to Sn-pefloxacin solution. The labeling technique is effective, as a high labeling yield (98%) was obtained after 30-minute reaction time. Different factors were found that influenced this labeling reaction: 0.5 mg pefloxacin or more must be used to prevent the formation of colloids in the reaction medium. Fifty micrograms of stannous chloride dihydrate were found to be sufficient to reduce all pertechnetate with activity ranging from 37 to 3700 MBq without the detection of free pertechnetate or colloids in the reaction mixture. The pH of the reaction medium was found to play an important role in the labeling process. The labeling reaction proceeds well at neutral pH (pH 6) but at acidic pH value (pH 4 or below) the yield of 99mTc-pefloxacin complex decreased markedly to a labeling yield of 5%. The reaction mixture must be heated to 100 °C in an oil bath to enhance the formation of the 99mTc-pefloxacin complex. The biodistribution data show that 99mTc labeled pefloxacin was retained in infectious focus. The retention was specific since the abscess uptake of 99mTc-pefloxacin remained high as compared to the uptake of aseptic foci at 24-hour post injection. Also, the clearance of the tracer from other tissues is rapid on the contrary to its clearance from the septic focus. This supports the hypothesis that 99mTc-pefloxacin is retained at the infectious site because of its specific binding to the gyrase enzymes of bacterial cells.  相似文献   

7.
A novel quinoline derivative, 2,2′-[(5-chloro-8-hydroxyquinoline-7-yl) methylazanediyl] diacetic acid (CHQMADA) was labeled with 99mTc using SnCl2·2H2O as a reducing agent to give a complex with a labeling yield 94 %. Also [99mTc(H2O)3(CO)3]+ was prepared by heating at 100 °C for 30 min using 2 mg CHQMADA at pH 8 to give a labeling yield >99 %. 99mTc-(CO)3 CHQMADA and 99mTc-Sn(II)-CHQMADA showed tissue uptake (target to non target T/NT = 6.80 ± 0.22) and (T/NT = 5.65 ± 0.34) respectively in Escherichia coli induced infection, which is higher than the commercially available 99mTc-ciprofloxacin (T/NT = 3.80 ± 0.80). In conclusion, both complexes were able to differentiate between septic and aseptic inflammation with superiority of [99mTc-(CO)3 CHQMADA].  相似文献   

8.
In this paper, 3-amino-1-hydroxypropylidene-1,1-bisphosphonate(APB), a amidobisphophonate was synthesized and labeled with the α-emitter 211At by an indirect method using N-succinimidyl 5-(tributylstannyl)-3-pyridinecarboxylate (SPC) as a bi-functional linker, and the conjugated amidobisphophonate (211At-SAPC-APB) was preliminarily evaluated in vitro and in vivo by comparison with free astatide (211At) and 99mTc-MDP. 3-amino-1-hydroxypropylidene-1,1-bisphosphonate(APB) was prepared using β-alanine as the starting material. With SPC bi-functional linker, APB was conjugated with 211At in a labeling yield of 80–90% with radiochemical purity of more than 99%. The conjugated amidobisphophonate (211At-SAPC-APB) exhibited considerable stability in vitro, in that the radiochemical purity of 211At-SAPC-APB was still more than 98% in 0.1 mol/L PBS (pH 7.6) or in fetal calf serum, even stayed for 24 h at room temperature (RT). Biodistribution of 211At-SAPC-APB was investigated in NIH strain mice by I.V injection. The results showed that 211At-SAPC-APB could rapidly locate in shank, with the maximum uptake of 23.70 ± 2.29% I.D/g at 6 h, earlier than that of 99mTc-MDP at 12 h, and stayed in the bone for long time. Moreover, 211At-SAPC-APB uptake in some key organs or tissues, especially in thyriod, stomach, lung and spleen, was much less than that of free astatide (211At), implying that 211At-SAPC-APB was constantly stable in vivo as well as in vitro. These results indicated that 211At-SAPC-APB will be a suitable candidate for the targeted radiotherapy of bone metastases and should be further investigated.  相似文献   

9.
A new formulation of a freeze-dried kit for the labeling of tetrofosmin with technetium-99m has been developed. The kit contains lyophilized mixture of 0.320 mg tetrofosmin [6,9-bis(2-ethoxyethyl)-3,12-dioxa-6,9-diphosphatetradecane], 0.025 mg stannous chloride dihydrate, 5 mg sodium tartrate and 5 mg sodium hydrogen carbonate. The product contains no antimicrobial preservative. When 99mTc pertechnetate up to 6 mL saline containing 200 mCi is added to lyophilized mixture, a lipophilic, cationic 99mTc complex is formed, 99mTc-tetrofosmin. The performance of newly developed kit is compared with commercially available MYOVIEW kit for heart imaging. The patient studies show that the images of heart obtained by 99mTc-tetrofosmin prepared by new formulation are equally good to MYOVIEW.  相似文献   

10.
In the recent years interests on dihydropyrimidinone and their analogues have increased potentially due to their wide range of pharmacological/biological activities. Synthesis, radiolabeling with technetium-99 m (99mTc) and biological evaluation of 5-etoxycarbonyl-4-phenyl-6-methyl-3,4-dihydro-(1H)-pyrimidine-2-one (DHPM) were studied in this present work. After synthesis complexation of DHPM with 99mTc was carried out using stannous chloride as the reducing agent. The complex (99mTc-DHPM) was characterized by thin layer chromatography, radio-HPLC technique and determination of partition co-efficient. Radiochemical stability and particle size distribution of the complex were also measured. Biodistribution/scintigraphy studies were performed in rats and rabbits to evaluate the pharmacological characteristics of this complex. The radiochemical purity of the complex was over 95% as studied by thin layer chromatography and radio-HPLC. It was stable over 24 h at room temperature. Its partition coefficient indicated that it was a lipophilic complex. According to the European Pharmacopeia, >80% of 99mTc labeled radiopharmaceutical (99mTc-MAA) in the size range 10–50 μm, must be accumulated in the lungs 15 min after intravenous administration. In this study >85% of the 99mTc-DHPM complex in the average size of 40 μm. Biodistribution studies of 99mTc-DHPM in rat revealed that the complex accumulated in the lung with high uptake and good retention after intravenous administration. Scintigraphic studies in rabbit also revealed that most of the administered radiolabeled complex was accumulated in the lungs and after 1 h slowly excreted through the renal system. The lung uptake (ID%/g) was 10.12, 9.67, 8.60 and 5.01 and the lung/liver ratio was 7.49, 2.88, 2.62 and 1.87 at 2, 15, 30 and 60 min post-injection, respectively. These results suggested that 99mTc-DHPM could be suitable as a potential lung perfusion imaging agent. Further studies with 99mTc-DHPM and its derivatives are warranted to develop new 99mTc-labeled imaging agents for clinical applications.  相似文献   

11.
Radiocomplexation of fleroxacin (FXN) with technetium-99m and its characterization in terms of in vitro stability in saline and serum solutions, in vitro binding with live and heat-killed Escherichia coli, and biodistribution in male Wistar rats (MWR) artificially infected with live and heat-killed E. coli was studied. The 99mTc-FXN complex showed a radiochemical purity (RCP) yield of 98.10 ± 0.24% at 30 min using 125 μg of stannous fluoride, 74 MBq of sodium pertechnetate, and 2 mg of FXN. The complex was found to be more than 90% stable up to 4 h after constitution in normal saline. In serum, the emergence of 16.50% undesirable species was observed within 16 h of incubation at 37 °C. The 99mTc-FXN complex showed saturated in vitro binding with E. coli with a maximum value of 65.00% at 90 min. A fivefold increase in uptake of the complex was noted in the infected when compared with the inflamed and normal muscle of the MWR infected with live E. coli. The stable radiochemical profile in saline and serum, saturated in vitro binding with E. coli and increased uptake in the infected muscle, confirmed the potential of the 99mTc-FXN complex as an E. coli infection imaging agent.  相似文献   

12.
In vivo imaging of tumours using radiolabelled somatostatin (SST) analogues has become an accepted clinical tool in oncology. HYNIC-Tyr3 octreotide and Tyr3 octreotide were synthesized by FMOC solid-phase peptide synthesis using a semi-automated synthesizer. These were analyzed and purified by RP-HPLC, mass spectroscopy, IR spectroscopy, 1H NMR and 13C NMR. The prochelator 6-BOC-HYNIC was also synthesised and characterised indigenously. HYNIC-Tyr3 octreotide was labelled with 99mTc using Tricine and EDDA as coligand by SnCl2 method. Labelling with 99mTc was performed at 100 °C for 15 min and radiochemical analysis by ITLC and HPLC methods. The radiochemical purity of the complex was over 98% and log p value was found to be −1.27 ± 0.12. The stability of radiolabelled peptide complex was checked at 37 °C up to 24 h. Blood clearance and protein-binding study was also performed. In vivo biodistribution studies in rat showed uptake of 99mTc-HYNIC-TOC in kidney than any other organs. The blood clearance was faster with rapid excretion through kidneys and relatively low uptake in liver.  相似文献   

13.
Pyrroloquinoline quinone (PQQ), an essential nutrient, antioxidant, redox modulator and nerve growth factor found in a class of enzymes called quinoproteins, was labeled with 99mTc by using stannous fluoride (SnF2) method. Radiolabeling qualification, quality control and characterization of 99mTc-PQQ and its biodistribution studies in mice were performed and discussed. Effects of pH values, temperature, time and reducing agents concentration on the radiolabeling yield were investigated. The quality control procedure of 99mTc-PQQ was determined by thin layer chromatography (TLC), radio high-performance liquid chromatography (RHPLC) and paper electrophoresis methods. The average radiolabeling yield was 94 ± 1% under optimum conditions of 0.99 mg of PQQ, 30 μg of SnF2, 0.5 mg of ethylenediaminetetraacetic acid disodium salt (EDTA-2Na) and 18.5 MBq of Na99mTcO4 at pH 6 and 25 °C with a response volume of 1 ± 0.1 mL. 99mTc-PQQ was stable and anionic. Lipid–water partition coefficient of 99mTc-PQQ was −1.49 ± 0.16. The pharmacokinetics parameters of 99mTc-PQQ were t 1/2α = 18.16 min, t 1/2β = 100.45 min, K 12 = 0.013 min−1, K 21 = 0.017 min−1, K e = 0.016 min−1, AUC (area under the curve) = 1040.78 ID% g−1 min and CL (plasma clearance) = 0.096 mL min−1. The dual-exponential equation was Y = 10.88e−0.038t  + 5.21e−0.0069t . The biodistribution of 99mTc-PQQ was studied in ICR (Institute for Cancer Research 7701 Burhelme Are., Fox Chase, Philadelphia, PA 1911 USA) mice. In vitro autoradiographic studies clearly showed that the 99mTc-PQQ radioactivity accumulated predominantly in the hippocampus and cortex, which had a high density of N-methyl-d-aspartate Receptor (NMDAR). The enrichment can be blocked by NMDAR redox modulatory site antagonists-ebselen (EB) and 99mTc-PQQ is therefore a promising candidate for the molecular imaging of NMDAR. To date, however, there have been no studies characterizing 99mTc-PQQ.  相似文献   

14.
The aim of the study of labeling of ligand–antibody conjugates was to find optimal conditions of preparing of these conjugates and appropriate radioactivity of selected nuclide for applications in nuclear medicine. Conjugation of the γ-immunoglobulin G (human or bovine IgG, polyclonal antibodies) and bifunctional chelating agent, diethylenetriaminepentaacetic acid dianhydride (cDTPAA), was carried out. Various values of the cDTPAA/antibody ratio, the weight concentration of polyclonal or monoclonal antibodies (MEM-97) and buffers were used. Further, the labeling conditions of the DTPA–IgG conjugate by radionuclides 90Y and 177Lu were optimized, and the labeling yield and the conjugation ratio of prepared radionuclide–DTPA–IgG conjugates was determined. Optimal incubation time of the immunoglobulin conjugation was obtained at 30 min from mixing of individual components. The labeling yield of radionuclide–DTPA–antibody conjugate higher than 95% was achieved. Higher values of conjugation ratio of radionuclide–DTPA–antibody conjugate were achieved in 0.1 mol L−1 carbonate buffer, pH 8.5, and the 0.1 mol L−1 carbonate buffer is suitable for studied conjugation systems. This study showed that the labeling yield as well as the conjugation ratio of tested systems depend on the amount of antibody substance, bifunctional chelating agent/antibody molar ratio and pH value of the buffer used.  相似文献   

15.
Tumors such as prostate, small cell lung cancer, breast, gastric and colon cancer are known to overexpress receptors to bombesin (BBN). In this study, a new bombesin analogue was labeled with 99mTc via HYNIC and tricine/EDDA as coligands and investigated further. HYNIC-GABA-Bombesin (7–14) NH2 was synthesized using a standard Fmoc strategy. Labeling with 99mTc was performed at 100 °C for 10 min and radiochemical analysis involved ITLC and HPLC methods. The stability of radiopeptide was checked in the presence of humane serum at 37 °C up to 24 h. The receptor bound internalization and externalization rates were studied in GRP receptor expressing PC-3 cells. Biodistribution of radiopeptide was studied in nude mice bearing PC-3 tumor. Labeling yield of >98% was obtained corresponding to a specific activity of ~2.6 MBq/nmol. Peptide conjugate showed good stability in the presence of human serum. The radioligand showed high and specific internalization into PC-3 cells (14.63 ± 0.41% at 4 h). In biodistribution studies, a receptor-specific uptake was observed in GRP-receptor-positive organs so that after 4 h the uptakes in mouse tumor and pancreas were 1.31 ± 0.18 and 1.2 ± 0.13% ID/g, respectively.  相似文献   

16.
Summary Cyanocobalamin (CNCbl), a kind of vitamin B12 (cobalamin, Cbl), which has a special binding capability to rapid dividing cells and proliferating tissue, especially tumors, has been modified and labeled by 99mTc. The optimal labeling condition was determined, and the biodistribution of 99mTc-DTPA-b-CNCbl both in normal mice and TA2 mice bearing MA891 mammary tumors were studied. 99mTc-DTPA-b-CNCbl showed low uptake and rapid clearance in nontarget tissues, and renal excretion. About 40% of uptake at 1 hour remained in the tumor at 12 hours p.i. The satisfying ratio of T/NT was acquired at 6 hours p.i.  相似文献   

17.
The reaction of 99mTc of different oxidation states (+7, +4) with 2-thiouracil and 5-nitrobarbituric acid have been studied at different temperatures, pH and concentrations. The reaction mixtures have been analyzed at different times using thin layer chromatography (TLC) and a radio detector to show the peaks at the plates. 99mTc is obtained from the Mo generators with oxidation state (+7). The use of SnCl2 as a reducing agent gave 99mTc with oxidation state (+4). It is very difficult to separate the complexes formed from the reactions in very small concentration. The percentage of 99mTc and its oxidation state involved in the complexes can be determined. The labeling efficiencies (percentage of complex) in the reaction of 99mTc+7 with 5-nitro-barbituric-acid increases mostly at pH  10. Both oxidation states of 99mTc(+7, +4) can be detected at pH’s 4 and 10, but at pH  4, the reduced form 99mTCO2, is more pronounced. At pH  7 no complexes were detected and most of 99mTc remains as 99mTCO4 . By increasing the ligand concentration, the labeling efficiencies of the complex increases. For the reaction of 99mTc of oxidation states (+4, +7) with 2-thiouracil at different temperatures and analytical times it is concluded that several complexes with different Rf values were observed in equilibrium and most of these complexes were unstable.  相似文献   

18.
A conjugate of 6-hydrazinopyridine-3-carboxylic acid (HYNIC) with aminomethylenediphosphonic acid (AMDP) was synthesized through a multiple-step reaction. HYNIC–AMDP could be labeled easily and efficiently with 99mTc using N-(2-hydroxy-1,1-bis(hydroxymethyl)ethyl)glycine (tricine) as coligand to form the 99mTc–HYNIC–AMDP complex in high yield (> 95%). Its partition coefficient indicated that it was a good hydrophilic complex. The biodistribution studies of 99mTc–HYNIC–AMDP in normal ICR mice showed that this complex had high bone uptake and low or negligible accumulation in non-target organs. As compared with 99mTc–MDP, 99mTc–HYNIC–AMDP had a higher bone uptake and the ratios of bone/blood and bone/muscle at early time after injection, suggesting that it could be potentially useful for bone imaging at an earlier time after injection according to further investigations of the biological behavior of this complex.  相似文献   

19.
A rapid method for the preparation of the radioiodinated 15-(4-iodophenyl)pentadecanoic acid (p-IPPA) was developed. 131I-p-IPPA was obtained from the corresponding tin precursor and 131I-iodide using Chloramine-T as an oxidant in a radiochemical yield of 90 ± 1.4% with a radiochemical purity > 99% when performing the labeling at room temperature within a reaction time of 3 min. The study of dependences on temperature (0, 20 and 80 °C) and reaction time (1, 3, 5, 10 and 30 min) showed no yield increase with higher temperatures and prolonged reaction times but the formation of side products.  相似文献   

20.
To increase the tumor uptake of Val-Gly-Gly (VGG), adenine was introduced into the peptide. N-mercaptoacetyl-VGG-adenine (MAVGG-adenine) and MAVGG were labeled with 99mTc using a solution of SnCl2 and tartaric acid as reducing agent. Biodistribution in mice bearing the S180 tumor was measured and γ imaging was performed. Compared with MAVGG, adenine conjugated MAVGG had higher tumor uptake and tumor to normal tissue ratios, which suggested that the tumor uptake property of a peptide may be improved by introducing a nucleotide base. The high contrasted tumor images of 99mTc-MAVGG-adenine also suggested its potential utility as tumor imaging agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号