首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the microdrilling of metals (stainless steel, copper and tungsten) for two different wavelengths, 1030 nm and 515 nm, in the regime of femtosecond laser pulses. An ytterbium-doped fibre CPA system provides high pulse energies (up to 70 μJ) and high repetition rates (up to 800 kHz), corresponding to high average powers of about 50 W, for this experimental study.  相似文献   

2.
Multimodal nanoand microscale surface textures are produced by scanning the surfaces of various structural materials using IR femtosecond laser radiation. The topographies of the modified surfaces and their wettabilities upon hydrophobization are studied.  相似文献   

3.
We have optimized the brightness of high-order harmonics from a long neon gas jet using self-guided and chirped laser pulses. The self-guided and chirped laser pulses effectively reduced the ionization effects in space and time, producing bright high-order harmonics with narrow bandwidth. The brightness of the 61st harmonic was about 1015 W/cm2/srad with a bandwidth of 0.7 Å. PACS 42.65.Ky; 42.65.Wi; 32.80.-t; 52.38.-r  相似文献   

4.
In order to investigate the effect of pulse width and solvent on the nonlinear properties of metal nanostructures, silver nanowires were fabricated in a direct current electric field (DCEF) using a solid-state ionic method and characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The nonlinear refractive index (γ) of silver nanowires suspended in ethanol was measured using the Z-scan technique and laser radiation of various (femto-, pico-, and nanosecond) pulse durations. Experimental results indicated that silver nanowires have obvious positive refractive nonlinearities and γ (the Kerr-induced self-focusing) increases as the pulse duration increases from 7.4×10−8 cm2/GW at 110 fs to 1.6×10−4 cm2/GW at 8 ns, due to the additional influence of the atomic reorientational Kerr effect in the case of longer pulses. Due to the solvent dependence of the nonlinear behavior of the silver nanowires, the nonlinear absorption and refraction of silver nanowires suspended in de-ionized water are smaller than those of silver samples suspended in ethanol. The thermal nonlinearities are insignificant in our experimental conditions.  相似文献   

5.
The usage of Poincaré phase space for the representation of polarization-shaped femtosecond laser pulses is discussed. In these types of light fields the polarization state (i.e. ellipticity and orientation) changes as a function of time within a single laser pulse. Such deliberate variation can be achieved by frequency-domain femtosecond pulse shaping in which two polarization components are manipulated individually. Here it is shown how these light pulses can be represented as temporal trajectories through the ellipticity-orientation (Poincaré) phase space, whereas conventional light (either continuous-wave or pulsed) is determined by only one specific Poincaré location. General properties of parametric Poincaré trajectories are discussed, and their relation to experimentally accessible pulse-manipulation parameters (i.e. amplitudes and phases) determined. Specifically, it is shown how the maximum rate by which a given polarization state can be turned into a different one (at significant intensity levels) is limited by the spectral laser bandwidth. Apart from their direct usage in polarization-shaped pulse representation, Poincaré trajectories also form the basis for intuitive quasi-three-dimensional renderings of the electric field profile. There, the temporal evolution of polarization, intensity, and chirp is directly apparent in a single illustration. Received: 10 December 2002 / Published online: 24 April 2003 RID="*" ID="*"Corresponding author. Fax: +49-931/888-4906, E-mail: brixner@physik.uni-wuerzburg.de  相似文献   

6.
A method is proposed for the fabrication of micro/nano crystalline indium tin oxide (c-ITO) structures using a Ti:Sapphire laser with a repetition rate of 1 kHz and a wavelength of 800 nm. In the proposed approach, an amorphous ITO (a-ITO) thin film is transformed into a c-ITO micro/nano structure over a predetermined area via laser beam irradiation, and the residual a-ITO thin film is then removed using an etchant solution. The fabricated c-ITO structures are observed using scanning electron microscopy (SEM) and cross-sectional transmission electron microscopy (TEM). The observation results show that the use of a low repetition rate laser induces a high thermal cycling effect within the ITO film and therefore prompts the formation of micro-cracks in the c-ITO structure. In addition, it is shown that as the laser power approaches the ablation threshold of the a-ITO thin film, nanogratings and disordered nanostructures are formed along the center lines of the c-ITO patterns formed using linearly polarized and circularly polarized laser beam irradiation, respectively. The nanogratings are found to have a period of approximately 200 nm (i.e. one-quarter of the irradiation wavelength), while the nanostructures have an average diameter of approximately 100–160 nm.  相似文献   

7.
Picosecond laser single pulse ablation of Au, Al and Ti alloy (Ti6Al4V) was experimentally investigated with a laser pulse width of 10 ps at a wavelength of 1064 nm for potential industrial micromachining applications. The diameters, depths and morphologies of the drilled craters were studied. Two novel phenomena were found: as hole diameters decreased with fluence, a change of slope of the trend line indicated a change in ablation mechanism for Al and Ti alloy, metallic materials with short electron-phonon coupling times (<10 ps), while Au showed no such transition: an isolated island structure was also observed on Au due to significant melt expulsion. A one-dimensional two-temperature model has been used to discriminate different ablation phenomena. It is shown that metallic materials with different electron–phonon coupling constant have different ablation characteristics in the ps regime. This study could be very helpful for metallic material micromachining with high repetition rate ps lasers pulses which indicates that high throughput may be achieved as well as good machining quality.  相似文献   

8.
The interaction of 40 ps pulse duration laser emitting at 532 nm wavelength with human dental tissue (enamel, dentin, and dentin–enamel junction) has been investigated. The crater profile and the surface morphology have been studied by using a confocal auto-fluorescence microscope (working in reflection mode) and a scanning electron microscope. Crater profile and crater morphology were studied after applying consecutive laser pulses and it was found that the ablation depth increases with the number of consecutive pulses, leaving the crater diameter unchanged. We found that the thermal damage is reduced by using short duration laser pulses, which implies an increased retention of restorative material. We observe carbonization of the irradiated samples, which does not imply changes in the chemical composition. Finally, the use of 40 ps pulse duration laser may become a state of art in conservative dentistry.  相似文献   

9.
In this paper, we present the investigation and characterization of the laser-induced surface structure on an asymmetrically cut InSb crystal. We describe diffraction from the ripple surface and present a theoretical model that can be used to simulate X-ray energy scans. The asymmetrically cut InSb sample was irradiated with short-pulse radiation centred at 800 nm, with fluences ranging from 10 to 80 mJ/cm2. The irradiated sample surface profile was investigated using optical and atomic force microscopy. We have investigated how laser-induced ripples influence the possibility of studying repetitive melting of solids using X-ray diffraction. The main effects arise from variations in local asymmetry angles, which reduce the attenuation length and increase the X-ray diffraction efficiency.  相似文献   

10.
By using a second harmonic of near infrared femtosecond (fs) laser (λ=387 nm, 150 fs) with high NA objective lens, fabrication resolution has been greatly improved in nano-fabrication of wide band-gap semiconductor gallium nitride (GaN). We have carried out a wet-chemical-assisted fs laser ablation method, in which the laser beam is focused onto a single-crystal GaN substrate immersed in a concentrated hydrochloric (HCl) acid solution. A two-step processing involving irradiation with a fs laser beam in air followed by wet chemical treatment is also performed for comparison. In the wet-chemical-assisted ablation, theoretical diameters of ablation craters are calculated as a function of pulse energy by assuming that the reaction is based on two-photon absorption. In lower energy, the calculated curve is close to the experimental value, while the actual measured diameters in the region of higher energy are larger than calculated values. In the condition of the highest fabrication resolution, we obtained ablation craters smaller than 200 nm at full width at half maximum. We have also demonstrated the fabrication of two-dimensional (2D) periodic nanostructures on surface of a GaN substrate using the second harmonic single fs-laser pulse. Uniform ablation craters with the size as small as 410 nm in diameter are arranged with a periodicity of 1 μm. Such structures are applicable to 2D photonic crystals which improve the light extraction efficiency for blue LEDs in the near future.  相似文献   

11.
We report on experimental and numerical investigations of femtosecond pulse propagation locally disturbed by the turbulent flow field of a hot-air blower. The experiments show that turbulence may shorten the collapse/filamentation distance and induce the onset of multiple filaments. This is supported by numerical simulations indicating that the high spatial frequency part of the turbulence spectrum plays a significant role.  相似文献   

12.
The generation of femtosecond X-ray pulses will have important scientific applications by enabling the direct measurement of atomic motion and structural dynamics in condensed matter on the fundamental time scale of a vibrational period. Interaction of femtosecond laser pulses with relativistic electron beams is an effective approach to generating femtosecond pulses of X-rays. In this paper we present recent results from proof-of-principle experiments in which 300 fs pulses are generated from a synchrotron storage ring by using an ultrashort optical pulse to create femtosecond time structure on the stored electron bunch. A previously demonstrated approach for generating femtosecond X-rays via Thomson scattering between terawatt laser pulses and relativistic electrons is reviewed and compared with storage-ring based schemes.  相似文献   

13.
Emission characteristics of gadolinium (Gd) oxide are studied, using ns and fs laser pulses for ablation in double-pulse laser induced breakdown spectroscopy (LIBS). In the current conditions of pulse energy and signal detection timing, emission intensity enhancement in the reheating mode is 25-fold, but little effect can be observed in a pre-pulse mode. It is shown that the optimum focus position of the ablation pulse is about 5 mm apart from the sample surface in the reheating mode. Although little emission can be observed in the single-pulse configuration with fs ablation pulses, the intense emission can be observed in the reheating mode in the double-pulse configuration.  相似文献   

14.
We report the fabrication of three-dimensional (3-D) SiO2 surfaces using femtosecond-laser lithography-assisted micromachining, which is a combined process of nonlinear lithography and plasma etching. Using pattern transfer of photoresist structures written by femtosecond laser-induced nonlinear absorption, SiO2-based Fresnel lens arrays with 3-D surfaces were obtained for this study. Using the open-aperture z-scan method, the femtosecond laser two-photon absorption coefficient of the KMPR resist was estimated as 17–23 cm/TW, assuming that single-photon absorption was negligible. By adding O2 to the etching gas (CHF3) during pattern transfer, the surface roughness of the transferred structures was reduced to RMS 16.90 nm, which corresponds to one quarter of that without adding O2. When 632.8-nm-wavelength light was coupled to the lenses with 3-D surfaces, the focal length was measured as 2790 μm, which agreed well with the theoretical value.  相似文献   

15.
We report on the generation of 27 fs pulses with an average output power of 57 W and a repetition rate of 78 MHz. The pulses are generated by combining a high average power fiber chirped pulse amplification (FCPA) system with a microstructured large-mode-area fiber for nonlinear compression. The FCPA system delivers 270 fs pulses in a linearly polarized beam with diffraction-limited quality. Nonlinear compression is achieved by launching the pulses into a short (few cm) piece of microstructured fiber and subsequent compression by a pair of chirped mirrors. PACS  42.55.Wd; 42.55.Xi, 42.65.Re  相似文献   

16.
Frequency doubling the output of a high-power femtosecond Cr:forsterite regenerative amplifier with >50% conversion efficiency in a temperature-tuned noncritically phase-matched LBO crystal produces femtosecond pulses of >100 μJ energy in the visible range near 625 nm at a pulse duration of about 200 fs or >65 μJ at <170 fs. Received: 29 March 1999 / Revised version: 27 April 1999 / Published online: 24 June 1999  相似文献   

17.
HW Chen  G Chang  S Xu  Z Yang  FX Kärtner 《Optics letters》2012,37(17):3522-3524
We demonstrate a fundamentally mode-locked Yb-fiber laser with 3?GHz repetition rate and ~206 fs pulse duration. The laser incorporates two enabling technologies: a 1?cm heavily Yb-doped phosphate glass fiber as the gain medium and a high-dispersion (-1300 fs2) output coupler to manage cavity dispersion. The oscillator self-starts and generates up to 53?mW average power.  相似文献   

18.
A reliable source of coherent ns pulses of infrared radiation continuously tunable between 1.4 and 22 m has been designed and built with the aim of developing a time-resolved infrared vibrational spectroscopy for species adsorbed on surfaces. The system is based on a Nd: YAG-laser and dye-laser combination which drive difference mixing processes in a sequence of nonlinear optical crystals (two LiNbO3, and a CdSe or AgGaS2). The system operates at MW peak power levels above 2500 cm–1, at kW power levels from 1000–2500 cm–1 and at 10–100 W levels down to 450 cm–1. These power levels are certainly sufficient for spectroscopic purposes, and at shorter wavelengths molecular pumping and applications requiring high-power should be possible. Vibrational spectra of a monolayer of CO adsorbed on Pt in an electrochemical cell have been obtained in an initial application of this source.  相似文献   

19.
The self-organized formation of ripples in the direction parallel to the groove during the femtosecond laser machining of microgrooves on aluminum nitride ceramic at laser fluences much higher than the single-pulse ablation threshold is reported. These parallel ripples are notably different from the commonly observed polarization-perpendicular ripples and are produced in grooves having an appropriate width and depth, irrespective of laser polarization. From subsequent experiments with narrow and wide groove widths, it could be considered that the groove walls play an important role in the formation of these parallel ripples, possibly by confining the laser-induced plasma.  相似文献   

20.
The propagation of femtosecond laser pulses in turbulent air near the ground is analyzed. Confining to a power regime distinctly above the critical power for self-focusing, i.e. P≈100P cr, and concentrating on initial peak intensities around 2.5×1011W/cm2, the onset and early evolution of multiple filaments are addressed. Making use of the turbulence phase-screen method, numerical simulations of the pulse propagation indicate that turbulence fields with spatial scales below 6 mm are able to induce the onset of multifilamentation. An analytical linear plane wave perturbation model of the underlying modulation instability of the pulse front is introduced in support of the computational results. By this means, insight into the amplification of an initial perturbation of the pulse front from the point of view of the spatial frequency domain is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号