首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The complete X-ray structure determination of Czochralski grown La3Zr0.5Ga5Si0.5O14 single crystals with the Ca3Ga2Ge4O14 structure is performed (sp. gr. P321, a = 8.226(1) Å, c = 5.1374(6) Å, Z = 1, Mo Kα1 radiation, 1920 crystallographically independent reflections, R = 0.0166, Rw = 0.0192). The absolute structure is determined. It is shown that possible transition of some of La atoms (~1.2%) from the 3e to 6g position may give rise to the formation of structural defects.  相似文献   

2.
An accurate X-ray diffraction study of Sr3TaGa3Si2O14 (STGS) crystal (a = 8.3023(10) Å, c = 5.0853(2) Å, sp. gr. P321, Z = 1, R/wR = 0.59/0.52%, 4004 independent reflections) is performed. The use of two independent data sets obtained on diffractometers with point and 2D detectors made it possible to determine the model structure characterized by the best reproducibility of parameters. The ordered distribution of atoms over crystallographic positions and the anharmonic character of displacements of all cations and one oxygen atom are established.  相似文献   

3.
An accurate X-ray diffraction study of Ca3TaGa3Si2O14 single crystal has been performed using two datasets obtained on a diffractometer equipped with a CCD area detector (a = 8.1056(2) Å, c = 4.9800(1) Å, sp. gr. P321, Z = 1, R/wR = 0.486/0.488%). A model structure is determined which is characterized by a high degree of reproducibility of structural parameters. Each site in Ca3TaGa3Si2O14 is occupied by atoms of only one type. Nevertheless, its structural feature is asymmetric disordering of sites of Ca, Ta, Ga, and two out of three oxygen atoms occupying special and general sites. A transition of some part of Ca atoms (~3%) from 3e sites on the twofold symmetry axis to general 6g sites is revealed.  相似文献   

4.
The absolute structure of La3Ga5SiO14 piezoelectric crystals (a = 8.1746(6) Å, c = 5.1022(4) Å, space group P321, Z = 1) with the positive sense of rotation of the plane of polarization is refined using X-ray diffraction analysis (R = 1.37%, R w = 1.71%, 2413 unique reflections, max sinθ/λ = 1.15 Å?1). The contributions from the anharmonicity of thermal vibrations of lanthanum atoms are calculated with the use of the components of the third-and fourth-rank tensors. It is demonstrated that these contributions can have a significant effect.  相似文献   

5.
The accurate X-ray diffraction study of a Sr3Ga2Ge4O14 crystal was performed based on two X-ray diffraction data sets collected on a diffractometer equipped with a CCD area detector (a = 8.2776(2), c = 5.0415(1) Å, sp. gr. P321, Z = 1, R/wR = 0.78/0.69%, 3645 independent reflections). The structure of Sr3Ga2Ge4O14 is characterized by the presence of two mixed cation sites, which is accompanied by the anharmonic motion not only of cations, but also of two oxygen atoms in general positions. The structures and electromechanical characteristics of Sr3Ga2Ge4O14 and Sr3TaGa3Si2O14 were compared. The Sr3Ga2Ge4O14 structure is characterized by a larger elongation of the Sr polyhedron along the a axis and, simultaneously, by the smaller unit-cell parameter a compared with Sr3TaGa3Si2O14, which correlates with the ratio of the piezoelectric coefficients d 11. The absence of thermally stable directions in the crystals of Sr3Ga2Ge4O14 and Sr3TaGa3Si2O14 is consistent with the absence of the anomalous temperature dependence of the dielectric constant ?33.  相似文献   

6.
The absolute crystal structure of the Ca3TaGa3Si2O14 piezoelectric compound is refined using X-ray diffraction analysis. The unit cell parameters and final R factors are as follows: a = 8.112(1) Å, c = 4.9862(6) Å, space group P321, Z = 1, R = 0.98%, and R w = 1.42%. It is shown that the configuration of the absolute crystal structure inherited from the seed material determines the positive sense of the optical activity of the crystal under investigation. The structural and acoustical characteristics of the Ca3TaGa3Si2O14 crystals are compared with those of the La3Ga5SiO14 crystals.  相似文献   

7.
Possible structural changes described by the group-subgroup relationships in the Ca3Ga2Ge4O14-type structure (sp. gr. P321) are considered. The most probable phase transitions seem to be those accompanied by lowering of the symmetry to the maximal non-isomorphic subgroups P3 and C2. It is shown that only destructive phase transitions accompanied by symmetry rise up to the minimal non-isomorphic supergroups for the given structure type can take place. The change of the trigonal symmetry to monoclinic is revealed in La3SbZn3Ge2O14, whose crystal structure is refined as a derivative structure of the Ca3Ga2Ge4O14 structure type within the sp. gr. A2 (C2). At ~250°C, La3SbZn3Ge2O14 undergoes a reversible phase transition accompanied by symmetry rise, A2 ? P321. Similar phase transitions, P321 ? A2, are also observed in La3Nb0.5Ga5.5O14 and La3Ta0.5Ga5.5O14 under the hydrostatic pressures 12.4(3) and 11.7(3) GPa, respectively. The mechanisms of compression and phase transition are based on the anisotropic compressibility of a layer structure. With the attainment of the critical stress level in the structure, the elevated compressibility in the (ab) plane gives rise to a phase transition accompanied by the loss of the threefold axis. Attempts to reveal low-temperature phase transitions in a number of representatives of the langasite family have failed.  相似文献   

8.
Accurate X-ray diffraction study of langasite (La3Ga5SiO14) single crystal has been performed using the data obtained on a diffractometer equipped with a CCD area detector at 295 and 90.5 K. Within the known La3Ga5SiO14 model, Ga and Si cations jointly occupy the 2d site. A new model of a “multicell” consisting of two different unit cells is proposed. Gallium atoms occupy the 2d site in one of these cells, and silicon atoms occupy this site in the other cell; all other atoms correspondingly coordinate these cations. This structure implements various physical properties exhibited by langasite family crystals. The conclusions are based on processing four data sets obtained with a high resolution (sin θ/λ ≤ 1.35 Å–1), the results reproduced in repeated experiments, and the high relative precision of the study (sp. gr. P321, Z = 1; at 295 K, a = 8.1652(6) Å, c = 5.0958(5) Å, R/wR = 0.68/0.68%, 3927 independent reflections; at 90.5 K, a = 8.1559(4) Å, c = 5.0913(6) Å, R/wR = 0.92/0.93%, 3928 reflections).  相似文献   

9.
The spectral and temperature characteristics of the magnetooptical Kerr effect and the optical properties of an La0.7Ca0.25Ba0.05MnO3 single crystal are studied. The data obtained are used to calculate the components of the permittivity tensor, whose behavior is interpreted within the framework of the known models of the electronic structure of manganites.  相似文献   

10.
A solid solution of the GaIn3Se6 (2Ga0.5In1.5Se3) composition with a hexagonal lattice (a = 7.051(3) Å, c = 19.148(2) Å, sp. gr. P61, z = 6, V = 824.4332(4) Å3, ρ = 5.379(2) g/cm3) has been synthesized as a result of alloying Ga, In, and Se elements with a metal ratio of 1: 3. It was established that six out of nine In atoms in the lattice are located in a trigonal bipyramid, while the other three In atoms and three Ga atoms have a tetrahedral coordination.  相似文献   

11.
The crystal structure of monoclinic La3SbZn3Ge2O14 crystals from the langasite family is determined by X-ray diffraction analysis [a = 5.202(1) Å, b = 8.312(1) Å, c = 14.394(2) Å, β = 90.02(1)°, sp. gr. A2, Z = 2, and R/R w = (5.2/4.6)%]. The structure is a derivative of the Ca3Ga2Ge4O14-type structure (a = 8.069 Å, c = 4.967 Å, sp. gr. P321, Z = 1). The crystal studied is a polysynthetic twin with the twin index n = 2, whose monoclinic components are related by pseudomerohedry by a threefold rotation axis of the supergroup P321.  相似文献   

12.
An accurate structure analysis of Sr3NbGa3Si2O14 single crystals, belonging to the langasite family, has been performed. Two datasets are obtained on an Xcalibur S diffractometer equipped with a CCD detector. The structure is been refined using an averaged dataset: sp. gr. P 321, Z = 1, 295 K, sin θ/λ ≤ 1.35 Å–1, a = 8.2797(3) Å, c = 5.0774(5) Å; the agreement factors between the model and experiment are found to be R/wR = 0.76/0.64% and Δρmin/Δρmax =–0.21/0.17 e/Å3 for 3820 independent ref lections. The Sr3NbGa3Si2O14 and Sr3NbFe3Si2O14 structures are compared, and the role of magnetic ions in the predicted P321 → P3 phase transition is analyzed.  相似文献   

13.
The multicell model alternative to the model of mixed atomic sites used now is proposed for a single crystal of La3Ga5GeO14 belonging to the langasite family. The multicell consists of four unit cells. In three identical cells of the structure, atoms adapt to the Ge atom occupying one of the two 2d positions on the threefold symmetry axis. In the fourth cell, atoms surround the Ge atom located at the 1a position. The multicell model allows one to study the short-range order of atoms by the methods of classical structure analysis based on Bragg scattering. Four high-resolution data sets measured at 295 and 111.5 K are used in the study. The results are obtained with high relative precision (space group P321, Z = 1; at 295 K a = 8.2020(6) Å and c = 5.1065(6) Å, R/wR = 0.81/0.73% for 3829 unique ref lections; at 111.5 K a = 8.1939(1) Å and c = 5.1022(4) Å, R/wR = 0.85/0.76% for 3880 reflections).  相似文献   

14.
The structure of the mineral parakeldyshite Na1.93ZrSi2O6.93(OH)0.07 is refined by X-ray diffraction analysis. The main crystallographic data are as follows: space group P \(\overline 1 \), a = 6.617(2) Å, b = 8.813(1) Å, c = 5.426(1) Å, α = 87.26(3)°, β = 85.68(3)°, γ = 71.45(3)°, and R F = 0.0153. The initial structural model of this mineral is confirmed. Within this model, the structure of parakeldyshite is based on the heteropolyhedral framework formed by [Si2O7] diorthogroups, which are linked together through isolated zirconium octahedra. The fundamental difference between the structure under investigation and the initial structural model is associated with the arrangement of the extraframework cations. A comparative crystal chemical analysis of the zirconium silicates with [Si2O7] diorthogroups is performed.  相似文献   

15.
An accurate structure analysis of a Ba3TaGa3Si2O14 single crystal from langasite family was performed using four X-ray diffraction data sets collected on a diffractometer equipped with a CCD area detector (sp. gr. P321, Z = 1, sinθ/λ ≤ 1.35 Å–1; at 295 K a = 8.516(1) Å, c = 5.1910(6) Å, R/wR = 0.58/0.56%, Δρmin/Δρmax =–0.73/0.42 e/Å3, 4414 independent reflections; at 106 K a = 8.5109(9) Å, c = 5.1861(9) Å, R/wR = 0.75/0.86%, Δρmin/Δρmax =–0.81/1.06 e/Å3, 4382 reflections). The distinguishing feature of the Ba3TaGa3Si2O14 structure is a strong disorder of the Ga atom at the 3f site. Structural transformations in the series of Сa3TaGa3Si2O14–Sr3TaGa3Si2O14–Ba3TaGa3Si2O14–Ba3TaFe3Si2O14 crystals were analyzed.  相似文献   

16.
Precision X-ray diffraction studies of La2 − x Bi x Mo2O9 (x = 0.04, 0.06, and 0.18) single crystals are performed. It is found that in the compounds doped with bismuth, analogously with the structure of the metastable βms phase of pure La2Mo2O9 (LM), the La, Mo1, and O1 atoms deviate from the threefold axis on which they are located in the high-temperature β phase. It is shown that bismuth atoms substitute for part of lanthanum atoms and occupy a position at the threefold axis in the neighborhood of the split lanthanum position. The implantation of bismuth atoms in the LM structure results in the return of a part of the molybdenum atoms to the position at the threefold axis. The occupancy of this position is equal to the occupancy of the bismuth atomic position.  相似文献   

17.
The crystal structure of the titanium-rich mineral wadeite K2(Ti0.55Zr0.45)Si3O9 from rischorrites of the Khibiny Alkaline Massif (Kola Peninsula, Russia) is studied by X-ray diffraction (XCalibur-S diffractometer, R = 0.0459): a = 6.8611(6) Å and c = 10.0611(9) Å; space group P63/m, Z = 6, D x = 3.03 g/cm3. It is shown that the unit-cell parameters and volume of the mineral of mixed (Ti/Zr) composition are naturally intermediate between those of the terminal members of the isomorphous wadeite-based K2ZrSi3O9–K2(Ti0.55Zr0.45)Si3O9–K2TiSi3O9 series. The expected correlation is due to the ionic radii of Zr4+ and Ti4+ which determine the lengths of Zr/Ti–O bonds in octahedra. The data of field observations and microscopic studies show that the Ti-dominant wadeite is formed on the basis of primary zirconium mineral in the course of a late imposed process under unique geochemical conditions.  相似文献   

18.
The structure of the metastable B1 phase of the La2Mo2O9 single crystal is investigated using X-ray diffraction. It is established that the crystal structure of the compound under investigation is described by the cubic unit cell with the parameter a = 7.158(5) Å, which makes it possible to index approximately 84% of the reflections measured for this single crystal. The structure of the metastable cubic B1 phase is characterized by a local lowering of the symmetry for the La and Mo atoms, which are displaced from their positions on the threefold axis, thus forming three sites around it with an occupancy of 0.333(2). The O(1) atom in the structure of the metastable cubic B1 phase remains in the 4a position on the threefold axis but occupies it by only 86%. The O(2) and O(3) atoms located in a general position occupy their own sites with occupancies of 0.77(2) and 0.35(2), respectively. The final R factor of the refinement of this structural model is 2.52%.  相似文献   

19.
The absorption and circular dichroism (CD) spectra of La3Ga5SiO14 langasite crystals doped with Pr3+, Ho3+, and Er3+ ions have been studied in the wavelength range of 350–700 nm. The electronic transitions of these ions, which replace La3+ ions in the 3e position with the symmetry 2, are observed in the spectra. All transitions are active in both the absorption and CD spectra. The dipole strengths D om, rotational strengths R om, and anisotropy factors g have been calculated for well-resolved bands. Some features are noted for the spectra that were obtained, and their relationship with the structure disorder is considered  相似文献   

20.
Polycrystalline samples of the composition La2Mo2 − x Sb x O9 − y , where 0 ≤ x ≤ 0.05, were prepared by solid-phase synthesis. Single crystals of La2Mo1.96Sb0.04O8.17 were obtained by spontaneous crystallization from flux. The structure of the metastable β ms phase of this compound was determined at room temperature by X-ray diffraction. It was found that the La, Mo, and O1 atoms are displaced from the threefold axis on which they are located in the high-temperature β phase. It was shown that molybdenum atoms in the crystal structure are partially replaced by antimony atoms, which are located on the threefold axis. In antimony-doped crystals, lanthanum atoms partially return to the site on the threefold axis and the coordination environment of molybdenum cations becomes more ordered, thus facilitating the stabilization of the cubic phase at room temperature. Calorimetric measurements (DSC) showed that the introduction of Sb as the dopant into the La2Mo2O9 structure leads to a decrease in the temperature of the α → β phase transition from 570 to 520°C and to the partial suppression of this transition. The temperature behavior of the conductivity confirms the DSC data. Thus, doping with Sb contributes to the stabilization of the cubic phase at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号