首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A two-dimensional problem obtained by time discretization and linearization of a viscous flow governed by the incompressible Navier-Stokes equations is considered. The original domain is divided into subdomains such that their interface is a smooth (nonclosed, self-avoiding) curve with the ends belonging to the boundary of the domain. A nonconforming finite element method is constructed for the problem, and the convergence rate of the discrete solution of the problem to the exact one is estimated in the L 2 h ) norm.  相似文献   

2.
In this paper we propose a new method of investigating the change of dynamics in reaction-diffusion equations, which is based on approximating the Euclidian norm of state variables along with the introduction of phase space. Our method is simple in implementation and can be applied to study the dynamics of multiple spirals. The method is extended to study the stability of spiral waves by developing an algorithm which is applied to circular and meandering motions.  相似文献   

3.
4.
The inverse problem for the FitzHugh-Nagumo and Aliev-Panfilov models describing wave propagation in excitable media is considered. The problem lies in determining a localized initial condition from measurements on the external boundary of a plane region. A numerical method for solving the inverse problem is proposed, and the results from a numerical solution of the inverse problem for regions similar to different sections of a heart are presented.  相似文献   

5.
The convergence and stability of a numerical method, which applies a nonconforming finite element method and an artificial boundary method to a multi-atomic Young measure relaxation model, for micromagnetics are analyzed. By revealing some key properties of the solution sets of both the continuous and discrete problems, we show that our numerical method is stable, and the solution set of the continuous problem is well approximated by those of the discrete problems. The performance of our method is also illustrated by some numerical examples. The research was supported in part by the Major State Basic Research Projects (2005CB321701), NSFC projects (10431050, 10571006, 10528102 and 10871011) and RFDP of China.  相似文献   

6.
This paper discusses the consistent regularization property of the generalized α method when applied as an integrator to an initial value high index and singular differential-algebraic equation model of a multibody system. The regularization comes from within the discretization itself and the discretization remains consistent over the range of values the regularization parameter may take. The regularization involves increase of the smallest singular values of the ill-conditioned Jacobian of the discretization and is different from Baumgarte and similar techniques which tend to be inconsistent for poor choice of regularization parameter. This regularization also helps where pre-conditioning the Jacobian by scaling is of limited effect, for example, when the scleronomic constraints contain multiple closed loops or singular configuration or when high index path constraints are present. The feed-forward control in Kane’s equation models is additionally considered in the numerical examples to illustrate the effect of regularization. The discretization presented in this work is adopted to the first order DAE system (unlike the original method which is intended for second order systems) for its A-stability and same order of accuracy for positions and velocities.  相似文献   

7.
We present a numerical method for the resolution of a bidimensional blood flow problem and more generally for a fluid flow surrounded by a time dependent domain. Our approach is based on an ALE formulation which is solved using a Galerkin method with an eigenvectors basis set on the initial fixed domain.  相似文献   

8.
During the execution of a parallel asynchronous iterative algorithm, each task does not wait for predetermined data to become available. On the contrary, they can be viewed as local and independent iterative algorithms, which perform their own iterative scheme on the data currently available.On the basis of this computational model, a parallel asynchronous version of the quasi-Newton method for solving unconstrained optimization problems is proposed. The algorithm is based on four tasks concurrently executing and interacting in an asynchronous way.Convergence conditions are established and numerical results are presented which prove the effectiveness of the proposed parallel asynchronous approach.This research work was partially supported by the National Research Council of Italy within the special project Sistemi Informatici e Calcolo Parallelo under CNR Contract No. 92.01585.PF69.The authors are grateful to M. Al-Baali and R. H. Byrd for their valuable comments.  相似文献   

9.
We present a stochastic approach for the simulation of coagulation–diffusion dynamics in the gelation regime. The method couples the mass flow algorithm for coagulation processes with a stochastic variant of the diffusion-velocity method in a discretized framework. The simulation of the stochastic processes occurs according to an optimized implementation of the principle of grouping the possible events. A full simulation of a particle system driven by coagulation–diffusion dynamics is performed with a high degree of accuracy. This allows a qualitative and quantitative analysis of the behaviour of the system. The performance of the method becomes more evident especially in the gelation regime, where the computations become usually very time consuming.  相似文献   

10.
11.
A method is described for determining the optimal short-term prediction time-delay embedding dimension for a scalar time series by training an artificial neural network on the data and then determining the sensitivity of the output of the network to each time lag averaged over the data set. As a byproduct, the method identifies any intermediate time lags that do not influence the dynamics, thus permitting a possible further reduction in the required embedding dimension. The method is tested on four sample data sets and compares favorably with more conventional methods including false nearest neighbors and the ‘plateau dimension’ determined by saturation of the estimated correlation dimension. The proposed method is especially advantageous when the data set is small or contaminated by noise. The trained network could be used for noise reduction, forecasting, and estimating the dynamical and geometrical properties of the system that produced the data, such as the Lyapunov exponent, entropy, and attractor dimension.  相似文献   

12.
13.
14.
We study a generalized Crank–Nicolson scheme for the time discretization of a fractional wave equation, in combination with a space discretization by linear finite elements. The scheme uses a non-uniform grid in time to compensate for the singular behaviour of the exact solution at t = 0. With appropriate assumptions on the data and assuming that the spatial domain is convex or smooth, we show that the error is of order k 2 + h 2, where k and h are the parameters for the time and space meshes, respectively.  相似文献   

15.
By splitting a given singular function into a relatively smooth part and a specially structured singular part, it is shown how the traditional Fourier method can be modified to give numerical methods of high order for calculating derivatives and integrals. Singular functions with various types of singularities of importance in applications are considered. Relations between the discrete and the continuous Fourier series for the singular functions are established. Of particular interest are piecewise smooth functions, for which various important applications are indicated, and for which numerous numerical results are presented.

  相似文献   


16.
17.
Summary We present an analysis of a method suggested by Kufarev for the numerical determination of the parameters involved in the Schwarz-Christoffel integral. We test the approach for certain polygonal domains including two with re-entrant corners and one with a cut. Finally, we consider the Motz problem from this point of view.  相似文献   

18.
19.
The authors describe a method for computing the thermal diffusivity of a solid, based on a computer assisted evaluation of the solution of the transient inverse heat conduction problem.The program computes either the unknown diffusivity or simulates the one-dimensional unsteady heat transfer problem. The user may model the boundary conditions by a choice of different functions.The program provides instruction and information at all stages of input and provides tabular output of results. It may be used by anybody wishing to solve or simulate heat transfer processes.  相似文献   

20.
This study deals with obtaining numerical solutions of two-dimensional (2D) fractional cable equation in neuronal dynamics by using a recently introduced meshless method. In solution process at first stage, time derivatives that are appeared in the considered problem are discretized by using finite difference method. Then a meshless method based on hybridization of Gaussian and cubic kernels is developed in local fashion. The problem is solved both on regular and irregular domians. L and RMS error norms are calculated and compared with other numerical methods in literature as well as exact solutions. Also, obtained condition numbers are monitored. Numerical simulations show that local hybrid kernel meshless method is a thriving method for solving 2D fractional cable equation on regular and irregular domians.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号