首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The main thrust characteristics, such as thrust force, specific impulse, specific fuel consumption, and specific thrust, of a pulse detonation engine (PDE) with an air intake and nozzle in conditions of flight at a Mach number of 3 and various altitudes (from 8 to 28 km above sea level) are for the first time calculated with consideration given to the physicochemical characteristics of the oxidation and combustion of hydro-carbon fuel (propane), finite time of turbulent flame acceleration, and deflagration-to-detonation transition (DDT). In addition, a parametric analysis of the influence of the operation mode and design parameters of the PDE on its thrust characteristics in flight at a Mach number of 3 and an altitude of 16 km is performed, and the characteristics of engines with direct initiation of detonation and fast deflagration are compared. It is shown that a PDE of this design greatly exceeds an ideal ramjet engine in specific thrust, whereas regarding the specific impulse and specific fuel consumption, it is not inferior to the ideal ramjet.  相似文献   

2.
We discuss the method of comparing pulse detonation engines (PDE) and engines with combustion in subsonic flow (ramjet) by means of their specific impulse used by the “Center of Pulse-Detonation Combustion” (CPDC). We demonstrate that the method used by CPDC to calculate the performance of PDE overstates the value of specific impulse relative to its actual value by a factor of at least two. In contrast, the values of specific impulse for ramjet are understated. As a result, the specific impulse of PDE significantly exceeds that of ramjet or is close to it. We investigate these misleading conclusions, and demonstrate their complete failure.  相似文献   

3.
符号表fIkg空气对应的燃料流量ISP燃料比冲Ti后燃烧室出口温度马比推力,燃料空气当量比WT涡轮输出功MT飞行马赫数$前登燃烧室出口温度。T涡轮膨胀比H飞行高度T4*热交换器出口温度7TC压气机压比1引言八十年代以来,美、俄、德、法、英、日等主要空间大国均提出了各自的高超音速计划,如NASP、Sanger、HOTOL、STAR等。各国的方案在Ma>6.5均采用火箭发动机或超燃冲压发动机,对于Ma<6.5采用何种方案则分歧较大,有涡轮一冲压组合发动机方案、ATR方案、LACE方案等。本文对反循环发动机(InverseCgcleEngine)方案作了进…  相似文献   

4.
Multi-variant three-dimensional numerical simulations demonstrate the feasibility of the continuous- detonation process in an annular combustor of a ramjet power plant operating on hydrogen as fuel and air as oxidant in conditions of flight at a Mach number of M 0 = 5.0 and an altitude of 20 km. Conceptual schemes of an axisymmetric power plant, 400 mm in external diameter and 1.3 to 1.5 m in length, with a supersonic intake, divergent annular combustor, and outlet nozzle with a frusto-conical central body are proposed. Calculations of the characteristics of the internal and external flows, with consideration given to the finite rate of turbulent-molecular mixing of the fuel mixture components with each other and with the combustion products, as well as the finite rate of chemical reactions and the viscous interaction of the flow with the bounding surfaces, have shown that, in these flight conditions, the engine of such a power plant has the following performance characteristics: the thrust, 10.7 kN; specific thrust, 0.89 (kN s)/kg; specific impulse, 1210 s; and specific fuel?consumption 0.303 kg/(N h). In this case, the combustor can operate with one detonation wave traveling in the annular channel at an average velocity of 1695 m/s, which corresponds to a detonation wave rotation frequency of 1350 Hz. It is shown that, an operating combustor has regions with subsonic flow of detonation products, but the flow is supersonic throughout its outlet section.  相似文献   

5.
A design of an axisymmetric solid fuel ramjet consisting of a multi wedges nose air intake, solid fuel gas gene-rator, combustion chamber, and a nozzle, was developed. According to this design, a ramjet model for tests in the ground wind-tunnel facilities was fabricated. Experiments with solid fuel combustion were carried out in the Transit-M and T-313 wind tunnels, ITAM SB RAS, at air-flow Mach numbers М = 2.5?5.0. High values of the internal and net excess thrust were obtained.  相似文献   

6.
Theoretical fundamentals for calculating the thermodynamic cycle of engines with fuel detonation (FD cycle), which is realized in the thrust units of pulse detonation engines (PDE), are presented. A system of equations for calculating the parameters of the detonation waves under various conditions of their initiation is derived. These equations were used to examine how various factors influence the parameters of detonation waves and, consequently, the work of the cycle, thermal efficiency, and the specific parameters of the PDE. It was demonstrated that the maximum thermal efficiency of the FD cycle virtually coincides with the minimum losses caused by the irreversibility of heat input into the detonation wave. It was established that the losses are substantially dependent on the temperature of the working substance (compressed air or heated gas) supplied into the thrust units, more specifically, they decrease with increasing temperature.  相似文献   

7.
针对一种新型水下气液两相冲压发动机,综合考虑了湍流效应、气液两相之间的拖曳作用及传热与传质,利用计算流体力学方法研究了气液两相冲压发动机内流场的流动特性随发动机工作条件的变化规律,重点研究了气蚀效应对发动机工作性能的影响.主要结论为:当航行速度大于32 m/s,气液两相冲压发动机入口附近会产生气蚀并造成严重的总压损失,导致扩张段下游产生流动分离,此时发动机无法产生正推力;通过增大气体质量流率,气液两相冲压发动机内流场的压力将会随之升高,气蚀效应被抑制;提高注入发动机气体的温度,发动机的推力及比冲均增大,但是发动机效率急剧降低.   相似文献   

8.
Fuel economy at boost trajectory of the aerospace plane was estimated during energy supply to the free stream. Initial and final flight velocities were specified. The model of a gliding flight above cold air in an infinite isobaric thermal wake was used. The fuel consumption rates were compared at optimal trajectory. The calculations were carried out using a combined power plant consisting of ramjet and liquid-propellant engine. An exergy model was built in the first part of the paper to estimate the ramjet thrust and specific impulse. A quadratic dependence on aerodynamic lift was used to estimate the aerodynamic drag of aircraft. The energy for flow heating was obtained at the expense of an equivalent reduction of the exergy of combustion products. The dependencies were obtained for increasing the range coefficient of cruise flight for different Mach numbers. The second part of the paper presents a mathematical model for the boost interval of the aircraft flight trajectory and the computational results for the reduction of fuel consumption at the boost trajectory for a given value of the energy supplied in front of the aircraft.  相似文献   

9.
The exergy method is developed for computing the ramjet thrust-economic characteristics with regard for real thermodynamic properties of combustion products when using as fuel the hydrogen and hydrocarbon fuel for the freestream Mach numbers M = 4 ÷ 14. The estimates for the specific impulse of the given engine using the presented technique are shown to agree with the estimates computed by other authors. The computational method is intended for obtaining the ramjet characteristics and conduction of the parameter analysis at the research initial stage as well as for its use at the conceptual developments of hypersonic flying vehicles.  相似文献   

10.
Multidimensional simulations of the unsteady gasdynamic flow in the duct of an air-breathing pulse detonation engine (ABPDE) operating on propane gas and the flow around it in supersonic flight at Mach numbers M of 3.0 and an altitude of 9.3 and 16 km are performed. It is shown that, at a length and diameter of the duct of 2.12 m and 83 mm, respectively, an ABPDE with an air intake and a nozzle can operate in a cyclic mode at a repetition frequency of 48 Hz, with a rapid deflagration-to-detonation transition (DDT) occurring at a distance of 5–6 combustion chamber diameters. To determine the thrust performance of the ABPDE in flight conditions, a series of working cycles were simulated with consideration given to the external flow around the engine. Calculations showed that the specific impulse of the ABPDE is approximately 1700 s. This value is much higher than the specific impulse typical of ramjet engines operating on conventional combustion (1200–1500 s) and substantially lower than the specific impulse obtained for the atmospheric conditions at sea level at zero flight velocity (∼2500 s).  相似文献   

11.
The fuel economy was estimated at boost trajectory of aerospace plane during energy supply to the free stream. Initial and final velocities of the flight were given. A model of planning flight above cold air in infinite isobaric thermal wake was used. The comparison of fuel consumption was done at optimal trajectories. The calculations were done using a combined power plant consisting of ramjet and liquid-propellant engine. An exergy model was constructed in the first part of the paper for estimating the ramjet thrust and specific impulse. To estimate the aerodynamic drag of aircraft a quadratic dependence on aerodynamic lift is used. The energy for flow heating is obtained at the sacrifice of an equivalent decrease of exergy of combustion products. The dependencies are obtained for increasing the range coefficient of cruise flight at different Mach numbers. In the second part of the paper, a mathematical model is presented for the boost part of the flight trajectory of the flying vehicle and computational results for reducing the fuel expenses at the boost trajectory at a given value of the energy supplied in front of the aircraft. Sections, formulas, and figures have a numbering continued from the first part of the paper printed in the journal “Thermophysics and Aeromechanics”, 2008, Vol. 15, No. 4, P. 537–548.  相似文献   

12.
分别对采用不同面积比、不同长径比的收敛喷管、扩张喷管和收扩喷管的吸气式脉冲爆震发动机(PDE)进行了多循环爆震试验研究,着重研究了不同工作频率下喷管面积比和长径比对吸气式PDE性能的影响.研究发现,各个工作频率下,收敛喷管均能显著提高发动机性能,面积比越小,增推效果越好,最大能够达到32%;扩张喷管则降低发动机性能或者增推效果有限;收敛扩张喷管增推效果略低于对应面积比的收敛喷管.喷管长径比对吸气式PDE性能影响不大,随着长径比增加,PDE推力略有降低.  相似文献   

13.
A method of characteristics is developed for any system of partial differential equations of any finite order that admits an isovector fieldV and an initial data map satisfying a specific transversality condition. It is shown to agree with the classical method of characteristics for a nonlinear, first-order PDE and for quasilinear systems of first-order PDE with the same principal part. The method is also applicable to systems of nonlinear, first-order PDE and to systems of higher order, where it agrees with results obtained by similarity and group invariant methods. Implementation of the characteristic method is easier than classical group invariant methods because a complete, independent system of invariants of the flow generated by the isovector (group symmetry) does not have to be computed. General solutions are obtained only whenV is a Cauchy characteristic vector of the fundamental ideal; otherwise, any characteristic solution is shown to satisfy an explicit system of differential constraints. Explicit examples and comparisons with more classical methods are given.  相似文献   

14.
Acoustic characteristics of pulse detonation engine(PDE) sound propagating in enclosed space are numerically and experimentally investigated. The finite element software LS-DYNA is utilized to numerically simulate the PDE sound propagating in enclosed space. Acoustic measurement systems are established for testing the PDE sound in enclosed space,and the time-frequency characteristics of PDE sound in enclosed space are reported in detail. The experimental results show that the sound waveform of PDE sound in enclosed space are quite different from those in open space, and the reflection and superposition of PDE sound on the walls of enclosed space results in the sound pressure oscillating obviously. It is found that the peak sound pressure level(PSPL) and overall sound pressure level(OASPL) of PDE sound in enclosed space are higher than those in open space and their difference increases with the rise of propagation distance. The results of the duration of PDE sound indicate that the A duration of PDE sound in enclosed space is higher than that in open space except at measuring points located at 2-m and 5-m while the B duration is higher at each of all measuring points. Results show that the enclosed space has a great influence on the acoustic characteristic of PDE sound. This research is helpful in performing PDE experiments in enclosed laboratories to prevent the PDE sound from affecting the safety of laboratory environment,equipment, and staffs.  相似文献   

15.
The influence of the space-time characteristics of a pulsed energy source on a supersonic flow through a divergent channel is considered. It is found that low-frequency energy sources used for generating the thrust may provide a considerably higher specific force than continuous energy input. The influence of the duration of periodically applied energy pulses on the specific force is shown to be nonmonotonic. Short pulses provide a much higher specific force compared with steady energy input. The nonuniformity of the energy input distribution along the channel is found to have a noticeable effect on the specific force.  相似文献   

16.
爆震燃烧近似为等容燃烧,理论上其热循环效率高于基于等压燃烧的爆燃燃烧,在超声速推进系统中具有潜在的应用价值.通过总结超声速气流中的爆震推进理论与研究进展,分析其需要解决的关键科学与技术问题,指导未来高超声速发动机的基础研究.文章重点总结了适用于高超声速飞行的斜爆震发动机、超声速脉冲爆震冲压发动机的基础研究进展.其中对斜爆震发动机的应用模式、相关实验研究思路及方法、数值仿真现状进行了总结分析.对超声速脉冲爆震冲压发动机的基础理论研究现状和目前研究的难点进行了梳理.基于爆震燃烧的超燃冲压发动机具有推进系统自增压、燃烧效率高、推力性能好、推进效率高、燃烧室长度短、结构重量轻等优势,文章总结了该发动机当前的发展进程和最新的研究进展,并对其未来的发展方向以及存在的技术问题进行了分析.   相似文献   

17.
涡轮-冲压组合发动机模态过渡段性能模拟和概念探讨   总被引:1,自引:0,他引:1  
1概述涡轮-冲压组合发动机是可望用于天地往返运输系统和高超声速民航运输的吸气式发动机。在地面起飞和低速飞行阶段以涡轮发动机模态工作,在高空高速阶段以冲压发动机模态工作.涡轮模态和冲压模态的相互转换过程称为模态过渡段。在过渡段中两种发动机共同工作以联合循环方式运行。组合发动机以联合循环方式工作的性能,不仅与组成它的涡轮发动机和冲压发动机本身的型式和特征有关,而且受到两类发动机相互关系以及调节机构的影响。所以,涡轮冲压组合发动机模态过渡段稳态和瞬态过程的研究,是组合发动机性能研究的重要组成部分[1-…  相似文献   

18.
Acoustic characteristics of a pulse detonation engine(PDE) with and without an ellipsoidal reflector are numerically and experimentally investigated. A two-dimensional(2 D) non-splitting unstructured triangular mesh Euler solver based on the space-time conservation element and solution element(CE/SE) method is employed to simulate the flow field of a PDE.The numerical results clearly demonstrate the external flow field of the PDE. The effect of an ellipsoidal reflector on the flow field characteristic near the PDE exit is investigated. The formation process of reflected shock wave and reflected jet shock are reported in detail. An acoustic measurement system is established for the PDE acoustic testing. The experimental results show that the ellipsoidal reflector changes the sound waveform and directivity of PDE sound. The reflected shock wave and reflected jet shock result in two more positive pressure peaks in the sound waveform. The ellipsoidal reflector changes the directivity of PDE sound from 20 to 0. It is found that the peak sound pressure level(PSPL) and overall sound pressure level(OASPL) each obtain an increment when the PDE is installed with a reflector. The maximum relative increase ratio of PSPL and OASPL are obtained at the focus point F2, whose values are 6.1% and 6.84% respectively. The results of the duration of the PDE sound indicate that the reflecting and focusing wave generated by the reflector result in the increment of A duration and B duration before and near focus point F2. Results show that the ellipsoidal reflector has a great influence on the acoustic characteristic of PDE sound. The research is helpful for understanding the influence of an ellipsoidal reflector on the formation and propagation process of PDE sound.  相似文献   

19.
不同功率下无工质微波推力器的推力预估   总被引:2,自引:0,他引:2       下载免费PDF全文
杨涓  李鹏飞  杨乐 《物理学报》2011,60(12):124101-124101
基于经典电动力学理论,从麦克斯韦方程组和麦克斯韦张量出发,推导出无工质微波推力器的推力计算方程. 应用有限元分析软件,计算了特定谐振模式下的特定圆台谐振腔在不同功率条件下的电磁场分布;根据推导出的理论计算公式,计算了不同功率条件下推力器的总推力. 计算结果表明:推力与功率成正比,而且磁场力决定着总推力的大小;圆台谐振腔消耗20–200 W电磁波功率时所产生的推力在20–250 mN范围内. 关键词: 电磁波 麦克斯韦张量  相似文献   

20.
The influence of acoustic resonators on the acoustic and propulsion performance characteristics of a ramjet ejector chamber under conditions with vibration hydrogen combustion was experimentally examined. In the study, resonators having identical throats and different cavity diameters were used. For fixed-volume resonators the best propulsion performance characteristics were achieved in the case in which the cavity diameter differed little from the resonator throat diameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号