首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Disintegration of waste-activated sludge (WAS) is regarded as a prerequisite of the anaerobic digestion (AD) process to reduce sludge volume and increase methane yield. Hydrodynamic cavitation (HC), which shares a similar underlying principle with ultrasonication but is energy-efficient, was employed as a physical means to break up WAS. Compared with ultrasonic (180–3600 kJ/kg TS) and thermal methods (72,000 kJ/kg TS), HC (60–1200 kJ/kg TS) found to consume significantly low power. A synergetic effect was observed when HC was combined with alkaline treatment in which NaOH, KOH, and Ca(OH)2 were used as alkaline catalysts at pH ranging from 8 to 13. As expected, the production yield of CH4 gas increased proportionally as WAS disintegration proceeded. HC, when combined with alkaline pretreatment, was found to be a cost-effective substitute to conventional methods for WAS pretreatment.  相似文献   

2.
The present work demonstrates the effective application of pretreatment based on cavitation to improve biological oxidation of real municipal and industrial wastewater. The optimum pretreatment conditions based on ultrasonic cavitation for treatment of municipal wastewater were observed as power dissipation of 90 W, a duty cycle of 70% and H2O2 dosage of 0.2 g/L resulting in about 24.9% COD reduction. The use of modified sludge and ultrasonic pretreatment for biological oxidation resulted in significant reduction in treatment time (36 h) than the treatment time (60 h) required for biological oxidation using untreated sludge as inoculum. Also, significantly enhanced biodegradability index (BI) from 0.33 to 0.6 was achieved using pretreatment for biological oxidation process. For the treatment of real industrial wastewater, different pretreatment approaches based on hydrodynamic cavitation (HC) in combination with H2O2, ozone or Fenton were investigated. The pretreatment using best approach of HC + Fenton resulted in 44.2% of COD reduction in total whereas only 28.1% of COD reduction was achieved for the untreated effluent being applied in the biological oxidation. Overall, the present work demonstrated the effectiveness of the pretreatment based on cavitation for the improved treatment of municipal and industrial wastewaters.  相似文献   

3.
The generation of cavitation fields for the pre-treatment of anaerobic sludge was studied by means of a novel acoustic measuring system. The influence of different reactor dimensions (i.e., choosing reaction chamber widths of 40, 60 and 80 mm) on the cavitation intensity was determined at various solid contents, flow rates and static pressures. Results suggest that the cavitation intensity is significantly reduced by the sonication of liquids with a high solid content. By increasing the pressure to 1 bar, the intensity of bubble implosions can be enhanced and the sound attenuation in the solid fraction is partly compensated compared to ambient pressure. However, a further increase in pressure to 2 bars has a detrimental effect due to the suppression of powerful bubbles. A reduction of the reactor gap permits an intensification of the treatment of waste activated sludge (WAS) by concentrating the ultrasound power from 6 to 18 dB. This effect is less relevant in digested sludge (DS) with its markedly lower total solids content (2.2% vs. 6.9% of solids in WAS). Increasing the flow rate, resulting in a flow velocity of up to 7 m/min, has no influence on the cavitation intensity. By adapting the reactor design and the static pressure to the substrate characteristics, the intensity of the sonication can be notably improved. This allows the design of sonication devices that are suitable for the intensive treatment of wastewater sludge.  相似文献   

4.
The effectiveness of tube and sonotrode reactors for the sonication of sewage sludge under identical conditions was compared for the first time. Despite the considerable structural differences, sonication with each ultrasonic reactor led to an accelerated degradation rate and an increased methane production within the first five days for the majority of the sewage sludge samples tested. On closer examination, however, it becomes clear that the investigated sonication systems are not equally suitable for the substrates considered. While the use of a sonotrode proved to be particularly advantageous for the treatment of waste activated sludge (+25% methane yield at 300 kJ/kgTS), the use of a 2-inch tube reactor achieved the highest enhancement for low-intensity sonication in digested sludge (+22% methane yield at 300 kJ/kgTS). With increasing energy input, more chemical oxygen demand was solubilized, but this did not result in an increase in methane yield for all samples. Sonication of waste activated sludge led to a significant reduction in viscosity of up to 50%, and a reduction of up to 60% was observed after sonication of digested sludge with low energy inputs. The study, therefore, demonstrates that the choice of the most suitable sonication system essentially depends on the properties of the sludge to be sonicated.  相似文献   

5.
声空化气泡内的高温、高压和高密度是声空化工程的机理和基础。该文简要回顾了国内外声空化理论和实验研究的进展,针对当前在液体中进行工业规模声处理等声能应用方面的现状和存在的问题,提出了扩大声能应用的一种可能途径——声空化空间分布控制并在实验室内进行了实验研究。结果表明该方法具有可行性。在此基础上,文中给出了基于空化空间分布控制方法在稠油井口辅助降粘和高固污泥预处理方面取得声空化工程初步应用的两个例子。现场的试验结果表明,这两种声空化工程化样机在实际现场工况条件下,均取得了较好的应用效果。最后,对当前声空化工程应用前景进行了初步探讨。  相似文献   

6.
Application of hydrodynamic cavitation (HC) was investigated with the objective of biogas production enhancement from co-digestion of oily wastewater (OWW) and waste activated sludge (WAS). Initially, the effect of HC on the OWW was evaluated in terms of energy consumption and turbidity increase. Then, several mixtures of OWW (with and without HC pretreatment) and WAS with the same concentration of total volatile solid were prepared as a substrate for co-digestion. Following, several batch co-digestion trials were conducted. To compare the biogas production, a number of digestion trials were also conducted with a mono substrate (OWW or WAS alone). The best operating condition of HC was achieved in the shortest retention time (7.5 min) with the application of 3 mm diameter orifice and maximum pump rotational speed. Biogas production from all co-digestion reactors was higher than the WAS mono substrate reactors. Moreover, biogas production had a direct relationship with OWW ratio and no major inhibition was observed in any of the reactors. The biogas production was also enhanced by HC pretreatment and almost all of the reactors with HC pretreatment had higher reaction rates than the reactors without pretreatment.  相似文献   

7.
Yin X  Lu X  Han P  Wang Y 《Ultrasonics》2006,44(Z1):e397-e399
In this essay, the influences of low frequency ultrasound (20 kHz) on dewater ability and anaerobic digestion behaviors of activated sewage sludge, obtained from Yangzi Water Treatment Plant, Yangzi Petrochemical Corporation, were discussed. Ultrasound pretreatment could enhance the filtration progress and decrease the moisture content of the sludge from 99% to 80%. Together with flocculant, the ultrasound pretreatment decreased the specific filtration resistance (SFR) of the sludge from 3.59 x 10(12) m/kg to 1.18 x 10(12) m/kg and saved about 25-50% of the flocculant dosage. Bound water of the sludge was measured by dilatometer. After 2-4 min treatment of ultrasound under intensity of 400 W/m(2), the bound water of sludge decreased from 16.7 g/g (dry base) to above 2.0 g/g (dry base). Ultrasound pretreatment could also enhance digestion and reduce digestion time. To the same resolution ratio, such as 49%, the digestion time of sludge with ultrasound pretreatment was 7 days less than that without ultrasound. Proper ultrasound pretreatment could also improve the dewater ability of the digested sludge, the final moisture of which was 73.7%.  相似文献   

8.
To augment the removal of pharmaceuticals different conventional and alternative wastewater treatment processes and their combinations were investigated. We tested the efficiency of (1) two distinct laboratory scale biological processes: suspended activated sludge and attached-growth biomass, (2) a combined hydrodynamic cavitation–hydrogen peroxide process and (3) UV treatment. Five pharmaceuticals were chosen including ibuprofen, naproxen, ketoprofen, carbamazepine and diclofenac, and an active metabolite of the lipid regulating agent clofibric acid.Biological treatment efficiency was evaluated using lab-scale suspended activated sludge and moving bed biofilm flow-through reactors, which were operated under identical conditions in respect to hydraulic retention time, working volume, concentration of added pharmaceuticals and synthetic wastewater composition. The suspended activated sludge process showed poor and inconsistent removal of clofibric acid, carbamazepine and diclofenac, while ibuprofen, naproxen and ketoprofen yielded over 74% removal. Moving bed biofilm reactors were filled with two different types of carriers i.e. Kaldnes K1 and Mutag BioChip? and resulted in higher removal efficiencies for ibuprofen and diclofenac. Augmentation and consistency in the removal of diclofenac were observed in reactors using Mutag BioChip? carriers (85% ± 10%) compared to reactors using Kaldnes carriers and suspended activated sludge (74% ± 22% and 48% ± 19%, respectively). To enhance the removal of pharmaceuticals hydrodynamic cavitation with hydrogen peroxide process was evaluated and optimal conditions for removal were established regarding the duration of cavitation, amount of added hydrogen peroxide and initial pressure, all of which influence the efficiency of the process. Optimal parameters resulted in removal efficiencies between 3–70%. Coupling the attached-growth biomass biological treatment, hydrodynamic cavitation/hydrogen peroxide process and UV treatment resulted in removal efficiencies of >90% for clofibric acid and >98% for carbamazepine and diclofenac, while the remaining compounds were reduced to levels below the LOD. For ibuprofen, naproxen, ketoprofen and diclofenac the highest contribution to overall removal was attributed to biological treatment, for clofibric acid UV treatment was the most efficient, while for carbamazepine hydrodynamic cavitation/hydrogen peroxide process and UV treatment were equally efficient.  相似文献   

9.
《Ultrasonics sonochemistry》2014,21(3):1065-1074
High efficiency resource recovery from dairy waste activated sludge (WAS) has been a focus of attention. An investigation into the influence of two step sono-alkalization pretreatment (using different alkaline agents, pH and sonic reaction times) on sludge reduction potential in a semi-continuous anaerobic reactor was performed for the first time in literature. Firstly, effect of sludge pretreatment was evaluated by COD solubilization, suspended solids reduction and biogas production. At optimized condition (4172 kJ/kg TS of supplied energy for NaOH – pH 10), COD solubilization, suspended solids reduction and biogas production was 59%, 46% and 80% higher than control. In order to clearly describe the hydrolysis of waste activated sludge during sono-alkalization pretreatment by a two step process, concentrations of ribonucleic acid (RNA) and bound extracellular polymeric substance (EPS) were also measured. Secondly, semi-continuous process performance was studied in a lab-scale semi-continuous anaerobic reactor (5 L), with 4 L working volume. With three operated SRTs, the SRT of 15 d was found to be most appropriate for economic operation of the reactor. Combining pretreatment with anaerobic digestion led to 58% and 62% of suspended solids and volatile solids reduction, respectively, with an improvement of 83% in biogas production. Thus, two step sono-alkalization pretreatment laid the basis in enhancing the anaerobic digestion potential of dairy WAS.  相似文献   

10.
The world-wide increasing environmental awareness and its subsequent regulations have led to the application of improved technologies in wastewater purification plants. This has resulted in higher wastewater and sludge productions. Sludge is the by-product of such plants and it is not only rich in organic carbon and pathogens but also in heavy metals and other environmental pollutants. In Europe, agricultural application of dried sludge (bio-solids) is confronted with negative reactions from the citizens, governmental organisations, farmers and the food industry. Ultrasonic disruption of sludge is a popular mechanical disruption process in sludge treatment. During ultrasonic treatment, high frequency acoustic signals are used to initiate the cavitation process. The applied ultrasonic field leads to a breakdown of cohesive forces of the liquid molecules resulting in the generation of cavitation bubbles. A shock wave is released by the collapse of the cavitation bubbles and propagates in the surrounding medium forming jet streams that cause the disruption of cells in sludge. Disruption of sludge cells enables the release of light organic substances into the sludge water thereby exposing them for further anaerobic digestion. This paper presents results on the disruption of conventionally stabilised sludge through the application of the ultrasonic field. In order to reduce the specific energy input (i.e. ratio of the consumed energy during ultrasonic disruption to the input sludge mass) and improve biogas production, the total solids content of the stabilised sludge was increased before disruption. The anaerobic digestion of sludge samples was carried out in a set of specially constructed laboratory anaerobic digesters. Results showed that subsequent anaerobic digestion of the ultrasonically disrupted sludge could improve biogas production with reduced sludge quantity that is vital to the economic consideration of the wastewater treatment plants. This process encourages the exploitation of valuable materials and energy from stabilised sewage sludge just before its final disposal. The negative effects of mixing disrupted sludge with its separated sludge water are also shown in this paper. This expresses the microbiological instability of the anaerobic process caused by the mixing process.  相似文献   

11.
Activated carbon (AC) has been widely used in water treatment because of its rich pore structure, large specific surface area, simple production process, low preparation cost and wide source of raw materials. In this paper, the regeneration efficiency of low-frequency ultrasonic pretreatment (40 kHz, 115Μw/cm3) on biological activated carbon (BAC) is investigated, and its principle is discussed. The results show that the micro-jet and micro-liquid flow with high temperature and pressure produced by micro-bubble rupture during ultrasonic cavitation play an important role in the regeneration of activated carbon. And optimum ultrasonic treatment time is determined (5 min). In addition, the preparation of cu-loaded activated carbon by ultrasound-microwave method is investigated to pretreat wastewater produced in paracetamol production. The results show that Cu and Cu oxides can be loaded on activated carbon surface by ultrasonic-microwave pretreatment. Finally, the pretreatments of activated carbon by physical, chemical and physical–chemical method are investigated. The effects of the above different pretreatment methods on the structure and adsorption properties of activated carbon are compared and evaluated  相似文献   

12.
The performance of a novel low-maintenance tube reactor for ultrasonic treatment of sludge has been evaluated. The effects of sonication on the release of soluble chemical oxygen demand (sCOD) and anaerobic digestibility of raw and digested sewage sludge as well as agricultural sludge were studied. Results suggest that solubilization and digestibility is dependent on both type of sludge and the energy input. Digested and raw sludge showed high degree of solubilization, however, methane production was only increased for digested sludge. Agricultural sludge was not significantly affected by ultrasonic treatment neither concerning sCOD release nor methane production. The configuration of the ultrasonic system (serial vs. parallel operation) did not show a significant difference in both sCOD release and methane production. However, parallel operation tends to perform better for digested sludge, while serial operation tends to perform better for raw sludge. The strongest effect was observed for the treatment of digested sludge by increasing the methane production by more than 60%, although with a very intensive energy input of more than 5,000 kJ per kg total solids. Hence, tube reactors seem to be an attractive alternative to sonotrode-based systems achieving similar performance at low maintenance with great potential especially for digested sludge.  相似文献   

13.
The aim of this study was to clarify the possibilities to increase the amount of soluble chemical oxygen demand (SCOD) and methane production of sludge using ultrasound technologies with and without oxidising agents. The study was done using multivariate data analyses. The most important factors affected were discovered. Ultrasonically assisted disintegration increased clearly the amount of SCOD of sludge. Also more methane was produced from treated sludge in anaerobic batch assays compared to the sludge with no ultrasonic treatment. Multivariate data analysis showed that ultrasonic power, dry solid content of sludge (DS), sludge temperature and ultrasonic treatment time have the most significant effect on the disintegration. It was also observed that in the reactor studied energy efficiency with high ultrasound power together with short treatment time was higher than with low ultrasound power with long treatment time. When oxidising agents were used together with ultrasound no increase in SCOD was achieved compared the ultrasonic treatment alone and only a slight increase in total organic carbon of sludge was observed. However, no enhancement in methane production was observed when using oxidising agents together with ultrasound compared the ultrasonic treatment alone. Ultrasound propagation is an important factor in ultrasonic reactor scale up. Ultrasound efficiency rose linearly with input power in sludge at small distances from the transducer. Instead, ultrasound efficiency started even to decrease with input power at long distances from the transducer.  相似文献   

14.
Ultrasound (ULS), sodium hydroxide (NaOH) and combined ultrasound/NaOH pre-treatment were applied to pre-treat waste activated sludge and improve the subsequent anaerobic digestion. Synergistic effect was observed when NaOH treatment was coupled with ultrasound treatment. The highest synergistic Chemical Oxygen Demand (COD) solubilization was observed when 0.02M NaOH was combined with five minutes ultrasonication: an extra 3000 mg/L was achieved on top of the NaOH (1975 mg/L) and ultrasonication (2900 mg/L) treatment alone. Further increase of NaOH dosage increased Soluble Chemical Oxygen Demand (SCOD), but did not increase the synergistic effect. Nine and 18 minutes ultrasonication led to 20% and 24% increase of methane production, respectively; Whereas, 0.05M NaOH pre-treatment did not improve the sludge biodegradability. Combined ultrasound/NaOH (9 min+0.05 M) showed 31% increase of methane production. A stepwise NaOH addition/ultrasound pre-treatment (0.02M+ULS for 5 min+0.02M+ULS for 4 min) was tested and resulted in 40% increase of methane production using 20% less chemicals.  相似文献   

15.
The present work investigates the application of hydrodynamic cavitation (HC) for the pretreatment of wheat straw with an objective of enhancing the biogas production. The hydrodynamic cavitation reactor is based on a stator and rotor assembly. The effect of three different speeds of rotor (2300, 2500, 2700 rpm), wheat straw to water ratios (0.5%, 1% and 1.5% wt/wt) and also treatment times as 2, 4 and 6 min have been investigated in the work using the design of experiments (DOE) approach. It was observed that the methane yield of 31.8 ml was obtained with untreated wheat straw whereas 77.9 ml was obtained with HC pre-treated wheat straw confirming the favourable changes during the pre-treatment. The combined pre-treatment using KOH and HC gave maximum yield of biogas as 172.3 ml. Overall, it has been established that significant enhancement in the biogas production can be obtained due to the pretreatment using HC which can also be further intensified by combination with chemical treatment.  相似文献   

16.
Filtration followed by expression characteristics of mixtures of clay and activated sludge are first reported in this study. Experimental results indicate that the average specific resistance of the mixed sludge exhibits an ideal-solution like behavior, that is, a linear combination of pure clay and activated sludge with the weight percentage as a parameter. In expression stage, nevertheless, the influence is highly nonlinear. The presence of a little amount of activated sludge can significantly increase both the expression creep effect and the portion of secondary consolidation. The consolidation stage data are interpreted by the Terzaghi-Voigt combined model, from which the model parameters are evaluated accordingly. As the activated sludge is added, both the difficulty of creeping of constituting particles within the sludge cake and the fraction of moisture attributed to the secondary consolidation increases rapidly, revealing a highly nonlinear characteristics. The dewatering efficiency of mixed sludge is discussed.  相似文献   

17.
Sonication and thermalization can be applied successfully to disrupt the complex waste activated sludge (WAS) floc structure and to release extra and intra cellular polymeric substances into soluble phase along with solubilization of particulate organic matters, before sludge digestion. In this study, sonication has been combined with thermalization to improve its disintegration efficiency. It was aimed that rise in temperature occurring during the sonication of sludge was used to be as an advantage for the following thermalization in the combined pre-treatment. Thus, the effects of sonication, thermalization and sono-thermalization on physical and chemical properties of sludge were investigated separately under different pre-treatment conditions. The disintegration efficiencies of these methods were in the following descending order: sono-thermalization > sonication > thermalization. The optimum operating conditions for sono-thermalization were determined as the combination of 1-min sonication at 1.0 W/mL and thermalization at 80 °C for 1 h. The influences of sludge pre-treatment on biodegradability of WAS were experienced with biochemical methane potential assay in batch anaerobic reactors. Relative to the control reactor, total methane production in the sono-thermalized reactor increased by 13.6% and it was more than the sum of relative increases achieved in the sonicated and thermalized reactors. Besides, the volatile solids and total chemical oxygen demand reductions in the sono-thermalized reactor were enhanced as well. However, it was determined that sludge pre-treatment techniques applied in this study was not feasible due to their high energy requirements.  相似文献   

18.
Biochar is a massively produced by-product of biomass pyrolysis to obtain renewable energy and has not been fully used.Incomplete separation of sludge and effluent and insufficient denitrification of sewage are two of main factors that influence the efficiency of activated sludge process.In this work,we proposed a new utilization of biochar and investigated the effect of biochar addition on the performance of settleability and denitrification of activated sludge.Results show that the addition of biochar can improve the settleability of activated sludge by changing the physicochemical characteristics of sludge (e.g.,flocculating ability,zeta-potential,hydrophobicity,and extracellular polymeric substances constituents).Moreover,the dissolved organic carbon released from biochar obtained at lower pyrolysis temperature can improve the nitrate removal efficiency to a certain extent.  相似文献   

19.
Flocs surface functional groups evolutions due to an ultrasonic treatment were investigated in respect with the mechanisms involved during sonication. Activated sludge surface functional groups changes were studied after treatment of a sample at different ultrasonic specific energies. Sludge functionality was qualitatively assessed by recording the infrared (FT-IR) spectra of centrifugation pellets. Potentiometric titration coupled with proton surface complexation modeling was used to assess the nature and quantity of ionizable functional groups present at the floc surface and in the aqueous phase. These evolutions were linked to changes of both mixed liquor biochemical composition (TSS, VSS, COD, proteins, humic like substances, polysaccharides) and physical properties (floc size and settleability). Observations carried out showed that activated sludge flocs were essentially mechanically disintegrated by ultrasonic waves: the nature of chemical bonds observed by FT-IR did not shift after ultrasonic treatment. Moreover, the total number of ionizable functional groups measured by potentiometric titrations remained constant during sonication. However, due to the solubilization of organic components induced by cavitation process, the corresponding ionizable functional groups (carboxyl, hydroxyl, amine) were transferred from particulate to soluble fraction. Moreover, due to the variable amount of proteins, humic like substances and polysaccharides solubilised, the relative contributions of carboxyl, hydroxyl and amine groups varied at floc surface.  相似文献   

20.
Wheat is grown in most of the Indian and Chinese regions and after harvesting, the remaining straw offers considerable promise as a renewable source most suitable for papermaking and as a pulping resource. Delignification of wheat straw offers ample scope for energy conservation by way of the application of the process intensification principles. The present work reviews the pretreatment techniques available for improving the effectiveness of the conventional approach for polysaccharide component separation, softening and delignification. A detailed overview of the cavitation assisted delignification process has been presented based on the earlier literature illustrations and important operational guidelines have been presented for overall low-cost and amenable energy utilization in the processes. The effectiveness of the methods has been evaluated according to yield and properties of the isolated fibers in comparison to the conventional treatment. Also the experimental results of one such non-conventional treatment scheme based on the use of hydrodynamic cavitation have been presented for the pulping of wheat straw. The effect of hydrodynamically induced cavitation on cell wall matrix and its components have been characterized using FT-IR analysis with an objective of understanding the cavitation assisted digestion mechanism on straws. It has been observed that the use of hydrodynamic cavitation does not degrade the fibrillar structure of cellulose but causes relocalisation and partial removal of lignin. Overall it appears that considerable improvement can be obtained due to the use of pretreatment or alternate techniques for delignification, which is an energy intensive step in the paper making industries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号