首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, a model of double porosity for a fractured porous medium using a combination of classical and gradient functions of mass transfer between the cracks and porous blocks in a weakly compressible single-phase fluid flow is considered. As compared to the wellknown models, the model with such a mass transfer function allows one to take into account the anisotropic properties of filtration in a more general form. The results of numerical tests for two- and three-dimensional model problems are presented. The computational algorithm is based on a finite element approximation with respect to space and a completely implicit approximation with respect to time.  相似文献   

2.
Recently, a great interest has been focused for investigations about transport phenomena in disordered systems. One of the most treated topics is fluid flow through anisotropic materials due to the importance in many industrial processes like fluid flow in filters, membranes, walls, oil reservoirs, etc. In this work is described the formulation of a 2D mathematical model to simulate the fluid flow behavior through a porous media (PM) based on the solution of the continuity equation as a function of the Darcy’s law for a percolation system; which was reproduced using computational techniques reproduced using a random distribution of the porous media properties (porosity, permeability and saturation). The model displays the filling of a partially saturated porous media with a new injected fluid showing the non-defined advance front and dispersion of fluids phenomena.  相似文献   

3.
This paper represents the results of wave transformation in porous structures and hydraulic performance of a vertical porous seawall. The study was carried out using a VOF based two-phase numerical hydrodynamic model. The model was developed by coupling an ordinary porous flow model based on extended Navier–Stokes equations for porous media, and a two-phase flow model. A unique solution domain was established with proper treatment of the interface boundary between water, air and the structure. The VOF method with an improved fluid advection algorithm was used to trace the interface between water and air. The resistance to flow caused by the presence of structural material was modeled in terms of drag and inertia forces. The parameters that govern resistance to flow in a porous media were calibrated for a typical structural setup and then the computational efficacy of the model was evaluated for several wave and structural conditions other than the calibrated setup. A set of comparisons of wave properties in and around the structure showed that the model reproduced reasonably good agreement between computed results and measured data. The model was then applied to investigate wave transformation in a vertical porous structure. The role of porosity and width of a structure in reducing wave reflection and increasing energy dissipation was investigated. It is confirmed that there exists an optimum value of structure width and porosity that can maximize hydraulic performances of a porous seawall.  相似文献   

4.
In this paper a micromechanically based flow potential for anisotropic fcc polycrystals is derived that takes into account the crystallite orientation distribution function (codf) in terms of tensorial texture coefficients. The effective flow potential is based on a representation theorem for anisotropic scalar functions depending on a 2nd-order tensor. A priori unknown functions in the representation are determined by defining and solving explicitly a minimization problem over SO(3). Important analytical properties of the coefficient matrix of the minimization problem are discussed. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Numerical method for a coupled continuum pipe‐flow/Darcy model describing flow in porous media with an embedded conduit pipe is considered. Wilson element on anisotropic mesh is used to solve the Darcy equation on porous matrix. The existence and uniqueness of the approximation solution are obtained. Optimal error estimates in L2 and H1 norms are established independent of the regularity condition on the mesh. Numerical examples show the efficiency of the presented scheme. With the same number of nodal points, the results using Wilson element on anisotropic mesh are much better than those of the same element and Q1 element on regular mesh. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Free surface flow analysis in porous media is challenging in many practical applications with strong non-linearity. An equivalent pipe network model is proposed for the simulation and evaluation of free surface flow in porous media. On the basis of representative elementary volume with homogeneous pore-scale patterns, the pore space of the homogeneous isotropic porous media is conceptualized as a collection of capillary tubes. According to Hagen-Poiseulle's law and flux equivalence principle, equivalent hydraulic parameters and unified governing formulations for the pipe network model are deduced. The two-dimensional free surface flow problem is reduced to a one-dimensional problem of pipe networks and a one-dimensional procedure based on the finite element method is then developed by introducing a continuous penalized Heaviside function. The proposed equivalent pipe network model is verified with results from numerical solutions and laboratory-measured data available in the literature, and good agreements are obtained. The proposed equivalent pipe network model is shown to be effective in analyzing the free surface flow in porous media. The numerical results also indicate that the proposed equivalent pipe network model has weak sensitivity of the mesh size and penalty parameters.  相似文献   

7.
To examine the filling process in a lithium-ion battery, a numerical model to characterize the displacing flow of a liquid in air-filled pores of thin heterogeneous porous materials is elaborated. The investigation is based on the volume-averaged Navier-Stokes equations for small Reynolds numbers, using a volume-of-fluid method to cover the multiphase flow. The flow is investigated with respect to the wall effect and to capillary action within the porous matrix. On the one hand, model experiments with similar particle-size distributions as in the battery layers are conducted to extract the porosity as function of the wall distance. On the other hand, experiments with the three different porous layers of the battery are performed to receive mean values for the most important properties related to the two-phase flow. Results for the displacement flow in parts of the battery are presented and discussed, showing a considerable influence of the modeled effects onto the flow characteristics. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
A linear system is considered of the differential equations describing a joint motion of an elastic porous body and a fluid occupying a porous space. The problem is linear but very hard to tackle since its main differential equations involve some (big and small) nonsmooth oscillatory coefficients. Rigorous justification under various conditions on the physical parameters is fulfilled for the homogenization procedures as the dimensionless size of pores vanishes, while the porous body is geometrically periodic. In result, we derive Biot’s equations of poroelasticity, the system consisting of the anisotropic Lamé equations for the solid component and the acoustic equations for the fluid component, the equations of viscoelasticity, or the decoupled system consisting of Darcy’s system of filtration or the acoustic equations for the fluid component (first approximation) and the anisotropic Lamé equations for the solid component (second approximation) depending on the ratios between the physical parameters. The proofs are based on Nguetseng’s two-scale convergence method of homogenization in periodic structures.  相似文献   

9.
Tim Ricken 《PAMM》2006,6(1):137-138
A comprehensive model for biological tissues must include the anisotropic tissue structure, the interstitial liquid wich saturated the tissue and the growth mechanism of the tissue. In the present contribution this is done by use of a three phasic model with a solid, liquid and nutrient phase in the framework of the porous media theory (TPM). In order to characterize the transversal isotropic skeleton behavior, an invariant formulation of the Helmholtz free energy function and the permeability tensor is suggested. The growth mechanism is characterizes by a mass transfer between the nutrient and solid phase. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
A one-dimensional model of filtration through a saturated porous medium with a mutual action between the solid matrix and the flow is investigated. The substances removed from the porous soil are both particles transported by the liquid flow and substances which diffuse in the fluid. Received June 30, 1997  相似文献   

11.
The commonly used flow models for fiber reinforced polymers often neglect the flow induced mechanical anisotropy of the suspension. With an increasing fiber volume fraction, this plays, however, an important role. There are some models which count on this effect, they are, however, phenomenological and require a fitted model parameter. In this paper, a micromechanically based constitutive law is proposed which considers the flow induced anisotropic viscosity of the fiber suspension. The introduced viscosity tensor can handle arbitrary anisotropy of the fluid-fiber mixture depending on the actual fiber orientation distribution. A homogenization method for unidirectional structures in contribution with orientation averaging is used to determine the effective viscosity tensor. The motion of rigid ellipsoidal fibers induced by the flow of the matrix material is described by Jeffery's equation. A numerical implementation of the introduced model is applied to representative flow modes. The calculated stress values are analyzed in transient and stationary flow cases. They show a less pronounced anisotropic viscous behaviour in every investigated case compared to the results obtained by the use of the Dinh-Armstrong constitutive law. The reason for the qualitative difference is that the presented model depends on the complete orientation information, while the other one is linear in the fourth-order fiber orientation tensor. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
The Interaction between wind flow and structures plays an important role in the computation of civil engineering application. In case of gravity prestressed membrane roofs, the wind lifting forces may exceed the dead load leading to high amplitude structural oscillations, which interact with the flow field. To investigate the interaction a consistent discretization method based on stabilized space‐time finite elements is applied. The flow field is modeled with the incompressible Reynolds Averaged Navier‐Stokes (RANS) equations with an anisotropic eddy‐viscosity turbulence model. The structural motion is described with the theory for geometrically nonlinear elastic deformation behavior, a strong coupling algorithm for the time‐dependent fluid‐structure interaction is implemented. Two applications show the capability of the turbulence model in representing the anisotropic turbulence structure, the differences in the flow field over a bluff body between two configurations representing a rigid and an elastic membrane roof, discusses the structural responses of the roof at a high Reynolds number. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
A mathematical model is presented in this paper which describes the dispersion of a chemically active solute in the laminar flow in a sparsely packed porous medium. The validity of time-dependent dispersion coefficient is widened by using a generalized dispersion coefficient. The effect of porous parameter and chemical reaction on the dispersion coefficient is studied. The exact solution for the mean concentration distribution of a chemically active solute is obtained as a function of downwind distance and time. Results are also obtained for pure convection.  相似文献   

14.
Non-linear laws of fluid flow through anisotropic porous media   总被引:3,自引:0,他引:3  
Non-linear laws of fluid flow through anisotropic porous media are written out in invariant tensor form for all crystallographic point symmetry groups. The equations, as is customary in seepage theory [1, 2], are represented by expressions containing the seepage velocity up to and including the third degree. Expressions defining non-linear flow resistances are given and it is shown that, when one transfers from linear to non-linear seepage laws, the symmetry group of the flow properties may change. For example, the isotropic flow properties manifested in Darcy's law may become essentially anisotropic in a non-linear law and display asymmetry, that is, they may be different along one straight line in the positive and negative directions. It is shown that, compared with linear seepage laws for anisotropic media, when flow properties may be defined by just four essentially different types of equation, in non-linear laws the appearance of anisotropy is highly diversified and the number of distinct types of equation increases considerably.  相似文献   

15.
In this paper, a fully coupled finite volume-finite element model for a deforming porous medium interacting with the flow of two immiscible pore fluids is presented. The basic equations describing the system are derived based on the averaging theory. Applying the standard Galerkin finite element method to solve this system of partial differential equations does not conserve mass locally. A non-conservative method may cause some accuracy and stability problems. The control volume based finite element technique that satisfies local mass conservation of the flow equations can be an appropriate alternative. Full coupling of control volume based finite element and the standard finite element techniques to solve the multiphase flow and geomechanical equilibrium equations is the main goal of this paper. The accuracy and efficiency of the method are verified by studying several examples for which analytical or numerical solutions are available. The effect of mesh orientation is investigated by simulating a benchmark water-flooding problem. A representative example is also presented to demonstrate the capability of the model to simulate the behavior in heterogeneous porous media.  相似文献   

16.
将多孔介质局部细观流动与基于Darcy定律的宏观物理模型相结合,应用三维CFD-DEM对多孔介质流场进行局部细观数值模拟,得到多孔介质的惯性阻力系数和粘性阻力系数.并将其作为参数提供给基于Darcy定律的CFD多孔介质模型,从而可用于更大规模的多孔介质流场计算.应用Voronoi多面体作为网格单元,解决了CFD DEM中网格孔隙率精确计算的困难.文中发展的多尺度结合应用的研究方法,在计算精度和计算效率的矛盾中找到了较好的平衡,对于工程应用而言,有节约实验成本、提高计算结果可靠性的功效.  相似文献   

17.
A new numerical method based on locally modified Cartesian meshes is proposed for solving a coupled system of a fluid flow and a porous media flow. The fluid flow is modeled by the Stokes equations while the porous media flow is modeled by Darcy's law. The method is based on a Robin-Robin domain decomposition method with a Cartesian mesh with local modifications near the interface. Some computational examples are presented and discussed.  相似文献   

18.
I study the structural stability for a problem in a porous medium when the density of saturating liquid is a nonlinear function of temperature and an internal heat source is present. It has been shown that for this problem when one considers thermal convection in a plane infinite layer then resonance may occur between internal layers that arise. A key parameter is the internal heat source and its presence may lead to oscillatory instability inducing resonance. Therefore, in this paper, I analyze the general structural stability problem of continuous dependence on the heat source itself for a model of nonisothermal flow in a porous medium of Forchheimer type, in a general three‐dimensional domain.  相似文献   

19.
This paper concerns the slow viscous flow through an aggregate of concentric clusters of porous cylindrical particles with Happel boundary condition. An aggregate of clusters of porous cylindrical particles is considered as a hydro-dynamically equivalent to solid cylindrical core with concentric porous cylindrical shell. The Brinkman equation inside the porous cylindrical shell and the Stokes equation outside the porous cylindrical shell in their stream function formulations are used. The drag force acting on each porous cylindrical particle in a cell is evaluated. In certain limiting cases, drag force converges to pre-existing analytical results, such as, the drag on a porous circular cylinder and the drag on a solid cylinder in a Happel unit cell. Representative results are then discussed and presented in graphical forms. The hydrodynamic permeability of the membrane built up from porous particles is evaluated. The variation of hydrodynamic permeability with different parameters is graphically presented. Some new results are reported for flow pattern in the porous region. Being in resemblance with the model of colloid particles with a coating of porous layers due to adsorption phenomenon, results obtained through this model can be useful to study the membrane filtration process.  相似文献   

20.
A well known and often used method to obtain anisotropic polymer films is the so-called pressing process. Here, films are squeezed under high temperatures, pressure and deformation rates. To simulate such a process, the polymeric matrix is treated as a non-Newtonian, viscoelastic melt. The modeling of such melts is done with the anisotropic molecule movement tensor generalization of the Maxwell Model for high deformation rates. The viscoelastic flow simulations are done with DEVSS stabilization techniques and an ALE based dynamic mesh Method. In this work we present simulations in order to show the difference between classical approaches using a generalized Newtonian viscosity to model the melt and the used viscoelastic models. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号