首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reactions of the triruthenium cluster complex [Ru3(mu-H)(mu3-eta2-HNNMe2)(CO)9] (1; H2NNMe2=1,1-dimethylhydrazine) with alkynes (PhC triple bond CPh, HC triple bond CH, MeO2CC triple bond CCO2Me, PhC triple bond CH, MeO2CC triple bond CH, HOMe2CC triple bond CH, 2-pyC triple bond CH) give trinuclear complexes containing edge-bridging and/or face-capping alkenyl ligands. Whereas the edge-bridged products are closed triangular species (three Ru-Ru bonds), the face-capped products are open derivatives (two Ru-Ru bonds). For terminal alkynes, products containing gem (RCCH2) and/or trans (RHCCH) alkenyl ligands have been identified in both edge-bridging and face-capping positions, except for the complex [Ru3(mu3-eta2-HNNMe2)(mu3-eta3-HCCH-2-py)(mu-CO)(CO)7], which has the two alkenyl H atoms in a cis arrangement. Under comparable reaction conditions (1:1 molar ratio, THF at reflux, time required for the consumption of complex 1), some reactions give a single product, but most give mixtures of isomers (not all the possible ones), which were separated. To determine the effect of the hydrazido ligand, the reactions of [Ru3(mu-H)(mu3-eta2-MeNNHMe)(CO)9] (2; HMeNNHMe=1,2-dimethylhydrazine) with PhC triple bond CPh, PhC triple bond CH, and HC triple bond CH were also studied. For edge-bridged alkenyl complexes, the Ru--Ru edge that is spanned by the alkenyl ligand depends on the position of the methyl groups on the hydrazido ligand. For face-capped alkenyl complexes, the relative orientation of the hydrazido and alkenyl ligands also depends on the position of the methyl groups on the hydrazido ligand. A kinetic analysis of the reaction of 1 with PhC[triple chemical bond]CPh revealed that the reaction follows an associative mechanism, which implies that incorporation of the alkyne in the cluster is rate-limiting and precedes the release of a CO ligand. X-ray diffraction, IR and NMR spectroscopy, and calculations of minimum-energy structures by DFT methods were used to characterize the products. A comparison of the absolute energies of isomeric compounds (obtained by DFT calculations) helped rationalize the experimental results.  相似文献   

2.
The reactions of doubly face-capped triruthenium cluster complexes of the type [Ru(3)(mu(3)-kappa(2)-HNNMe(2))(mu(3)-kappa(2)-R(2)CCHR(1))(mu-CO)(2)(CO)(6)] (HNNMe(2) = 1,1-dimethylhydrazide; R(2)CCHR(1) = alkenyl ligand) with terminal and internal alkynes have been studied in refluxing toluene. The following derivatives have been isolated from these reactions: [Ru(3)(mu(3)-kappa(2)-HNNMe(2))(mu(3)-kappa(2)-R(2)CCHR(1))(mu-kappa(2)-//-HCCH)(CO)(7)] (R(1) = R(2) = H, 5; R(1) = Ph, R(2) = H, 6; R(1) = CH(2)OMe, R(2) = H, 7 a; R(1) = H, R(2) = CH(2)OMe, 7 b) from acetylene, [Ru(3)(mu(3)-kappa(2)-HNNMe(2))(mu(3)-kappa(2)-HCCH(2))(mu-kappa(2)-//-PhCCPh)(CO)(7)] (11) from diphenylacetylene, and three isomers of [Ru(3)(mu(3)-kappa(2)-HNNMe(2))(mu(3)-kappa(2)-HCCH(2))(mu-kappa(2)-//-PhCCH)(CO)(7)] (14, 15 a, and 15 b) from phenylacetylene. These products result from substitution of a CO ligand by the alkyne and contain an Ru--Ru edge bridged by the alkyne ligand in a parallel manner. DFT calculations on selected isomeric products have helped to establish that the type of Ru--Ru edge bridged by the alkyne depends more on kinetic factors related to the size of the alkyne substituents than on the thermodynamic stability of the final products. The preparation of triruthenium cluster complexes with mu-//-alkyne ligands is unprecedented and seems to relate to the fact that the starting trinuclear complexes have their two triangular faces protected by capping ligands. The clusters bearing mu-//-acetylene (5-7) are thermodynamically unstable with respect to their transformation into edge-bridging vinylidene derivatives, [Ru(3)(mu(3)-kappa(2)-HNNMe(2))(mu(3)-kappa(2)-HCCHR)(mu-kappa(1)-CCH(2))(CO)(7)] (R = H, 8; Ph, 9; CH(2)OMe, 10). DFT calculations have shown that complex 8 is 11.2 kcal mol(-1) more stable than its precursor 5. The thermolysis of compound 11 leads to [Ru(3)(mu(3)-kappa(2)-HNNMe(2))(mu-kappa(4)-H(2)CCHCPhCPhCO)(mu-CO)(2)(CO)(5)] (12), which contains a novel edge-bridging dienoyl ligand that arises from an unusual coupling of diphenylacetylene, carbon monoxide, and the ethenyl ligand of complex 11. A chloro-bridged dimer of trinuclear clusters, [Ru(6)(mu-Cl)(2)(mu(3)-kappa(2)-HNNMe(2))(2)(mu(3)-kappa(2)-HCCH(2))(2)(mu-kappa(2)-PhCCHPh)(2)(mu-CO)(2)(CO)(10)] (13), has been prepared by treating compound 11 with hydrogen chloride. Therefore, edge-bridging parallel alkynes are susceptible to protonation to give edge-bridging alkenyl ligands. Compound 13 is the first complex to contain two alkenyl ligands on a trinuclear cluster, one face-capping and the other edge-bridging.  相似文献   

3.
The cluster [Ru332-HNNMe2)(μ-κ2-PhCHCPh)(μ-CO)2(CO)6], which has a face-capping 1,1-dimethylhydrazido and an edge-bridging 1,2-diphenylethenyl ligand, reacts with diphenylbutadiyne or 2,4-hexadiyne to give the isomeric triruthenium carbonyl cluster complexes [Ru332-HNNMe2)(μ-κ2-PhCHCPh){μ34-RCCCC(R)C(R)CCCR}(CO)6] (3a, R = Ph; 3b, R = Me) and [Ru332-HNNMe2)(μ-κ2-PhCHCPh){μ34-RCCCC(R)C(CCR)CR}(CO)6] (4a, R = Ph; 4b, R = Me). These compounds contain a large unsaturated hydrocarbyl ligand that arises from a metal-cluster-mediated head-to-head (3) or head-to-tail (4) coupling of two diyne molecules and maintain the original hydrazido and ethenyl ligands. Metal clusters that contain a face-capping diyne coordinated through only one alkyne fragment, such as [Ru332-HNNMe2)(μ-κ2-PhCHCPh)(μ32-RCCCCR)(CO)7], have also been isolated (2a, R = Ph; 2b, R = Me). They are the intermediates that incorporate a second diyne reagent to give 3 and 4. The structural parameters of intermediate 2b have been obtained from DFT calculations.  相似文献   

4.
5.
6.
7.
The reactivity of the cluster family [Ru(3)(CO)(12-x)(L)(x)] (in which L=PMe(3), PMe(2)Ph, PPh(3) and PCy(3), x=1-3) towards hydrogen is described. When x=2, three isomers of [Ru(3)(H)(mu-H)(CO)(9)(L)(2)] are formed, which differ in the arrangement of their equatorial phosphines. Kinetic studies reveal the presence of intra- and inter-isomer exchange processes with activation parameters and solvent effects indicating the involvement of ruthenium-ruthenium bond heterolysis and CO loss, respectively. When x=3, reaction with H(2) proceeds to form identical products to those found with x=2, while when x=1 a single isomer of [Ru(3)(H)(mu-H)(CO)(10)(L)] is formed. Species [Ru(3)(H)(mu-H)(CO)(9)(L)(2)] have been shown to play a kinetically significant role in the hydrogenation of an alkyne substrate through initial CO loss, with rates of H(2) transfer being explicitly determined for each isomer. A less significant secondary reaction involving loss of L yields a detectable product that contains both a pendant vinyl unit and a bridging hydride ligand. Competing pathways that involve fragmentation to form [Ru(H)(2)(CO)(2)(L)(alkyne)] are also observed and shown to be favoured by nonpolar solvents. Kinetic data reveal that catalysis based on [Ru(3)(CO)(10)(PPh(3))(2)] is the most efficient although [Ru(3)(H)(mu-H)(CO)(9)(PMe(3))(2)] corresponds to the most active of the detected intermediates.  相似文献   

8.
A new series of Te-Ru-Cu carbonyl complexes was prepared by the reaction of K(2)TeO(3) with [Ru(3)(CO)(12)] in MeOH followed by treatment with PPh(4)X (X=Br, Cl) and [Cu(MeCN)(4)]BF(4) or CuX (X=Br, Cl) in MeCN. When the reaction mixture of K(2)TeO(3) and [Ru(3)(CO)(12)] was first treated with PPh(4)X followed by the addition of [Cu(MeCN)(4)]BF(4), doubly CuX-bridged Te(2)Ru(4)-based octahedral clusters [PPh(4)](2)[Te(2)Ru(4)(CO)(10)Cu(2)X(2)] (X=Br, [PPh(4)](2)[1]; X=Cl, [PPh(4)](2)[2]) were obtained. When the reaction mixture of K(2)TeO(3) and [Ru(3)(CO)(12)] was treated with PPh(4)X (X=Br, Cl) followed by the addition of CuX (X=Br, Cl), three different types of CuX-bridged Te-Ru carbonyl clusters were obtained. While the addition of PPh(4)Br or PPh(4)Cl followed by CuBr produced the doubly CuBr-bridged cluster 1, the addition of PPh(4)Cl followed by CuCl led to the formation of the Cu(4)Cl(2)-bridged bis-TeRu(5)-based octahedral cluster compound [PPh(4)](2)[{TeRu(5)(CO)(14)}(2)Cu(4)Cl(2)] ([PPh(4)](2)[3]). On the other hand, when the reaction mixture of K(2)TeO(3) and [Ru(3)(CO)(12)] was treated with PPh(4)Br followed by the addition of CuCl, the Cu(Br)CuCl-bridged Te(2)Ru(4)-based octahedral cluster chain polymer {[PPh(4)](2)(Te(2)Ru(4)(CO)(10)Cu(4)Br(2)Cl(2)).THF}(infinity) ({[PPh(4)](2)[4].THF}(infinity)) was produced. The chain polymer {[PPh(4)](2)[4].THF}(infinity) is the first ternary Te-Ru-Cu cluster and shows semiconducting behavior with a small energy gap of about 0.37 eV. It can be rationalized as resulting from aggregation of doubly CuX-bridged clusters 1 and 2 with two equivalents of CuCl or CuBr, respectively. The nature of clusters 1-4 and the formation and semiconducting properties of the polymer of 4 were further examined by molecular orbital calculations at the B3LYP level of density functional theory.  相似文献   

9.
含磷、硫、氮配原子的钴羰基簇合衍生物的合成和表征   总被引:1,自引:0,他引:1  
过渡金属原子簇化学是当今化学学科中非常活跃的研究领域之一 ,这类簇合物大多有着新颖的几何构型和多样化的成键方式 ,并且具有独特的催化性能[1 ] 。迄今为止 ,人们合成了多种含磷、硫、氮等原子的铁、钴、钌等羰基簇合衍生物 ,但其中三种以上原子同时配位的情况并不多见 ,有金振兴等的含C、S、N配原子的三核钴簇[2 ] ;Luga和Cabeza的三钌簇[3 ,4] 以及Chihara等合成的五核钌簇[5] ,其分子中都有P、N、O三原子配位。我们利用复杂的含P、S、N等可配原子的有机配前体与二元钴羰合物反应 ,合成了一系列三核、四核…  相似文献   

10.
11.
12.
Hydrolysis of dibenzyltin dichloride in ethanol has been found to give an unprecedented carbonate anion (CO(3) (2-))-bridged double-ladder organooxotin cluster, [(R(2)SnO)(3)(R(2)SnOH)(2)(CO(3))](2) (1, R = C(6)H(5)CH(2)), with five tin atoms in each ladder. With the aim of obtaining organooxotin clusters with large cavities suitable for host-guest chemistry, we used 1,1'-ferrocenedicarboxylic acid (H(2)L(a)) and hexanedioic acid (H(2)L(b)) to replace the carbonate anions (CO(3) (2-)), and thereby clusters [(R(2)SnO)(3)(R(2)SnOH)(2)L(a)](2) (2) and [(R(2)SnO)(3)(R(2)SnOH)(2)L(b)](2) (3) were obtained. When 1 was treated with benzoic acid (HL(c)) in different stoichiometric ratios (1:4, 1:10), ladder cluster (R(2)SnO)(3)(R(2)SnOH)(2)(L(c))(2) (4) and drum cluster [RSn(O)L(c)](6) (5) were obtained. Through the hydrolysis of Cy(2)SnCl(2) (Cy = C(6)H(11)) and (C(6)H(5)CH(2))(2)SnCl(2), two interesting ethanolate-modified clusters [Cy(2)(C(2)H(5)O)SnOSn(C(2)H(5)O)Cy(2)](2) (6) and [(R(2)SnO)(3)(R(2)SnOH)(R(2)SnOC(2)H(5))(CO(3))](2) (7) were obtained. All the tin atoms in these ladder clusters are five-coordinate surrounded by two alkyl groups and three O atoms, and have distorted trigonal-bipyramidal coordination environments with two carbon atoms and one O atom in the equatorial positions and two O atoms in the axial positions. The structures of all these compounds have been established by single-crystal X-ray diffraction analyses.  相似文献   

13.
The anionic clusters [HOs(5)(CO)(15)](-), [PtRu(5)C(CO)(15)](2-), [Os(10)C(CO)(24)](2-), [Os(17)(CO)(36)](2-), [Os(20)(CO)(40)](3-), [Co(6)C(CO)(15)](2-), [Pt(3)Ru(10)C(2)(CO)(32)](2-) and [Pd(6)Ru(6)(CO)(24)](2-) have been analysed by energy-dependent electrospray ionisation mass spectrometry (EDESI-MS). Three main features have emerged. Firstly, carbonyl ligands are fragmented from clusters with compact metal cores in an orderly fashion, with each of the ions generated by CO loss having approximately equal intensity. Secondly, electron autodetachment takes place in multiply charged anionic clusters, but only after elimination of a large proportion of their carbonyl ligands. Thirdly, clusters with open metal cores do not undergo CO loss in an orderly fashion, but certain peaks are considerably less intense. The appearance of these low-intensity peaks is believed to signify polyhedral core rearrangements, with open clusters folding to form more compact geometries. In some cases, the gas-phase transformations observed by EDESI-MS mirror those that are known to take place in solution.  相似文献   

14.
15.
16.
17.
18.
Organometallic allyl compounds are important as allylation reagents in organic synthesis, as polymerization catalysts, and as volatile metal precursors in material science. Whereas the allyl chemistry of synthetically relevant transition metals such as palladium and of the lanthanoids is well‐established, that of main group metals has been lagging behind. Recent progress on allyl complexes of Groups 1, 2, and 12–16 now provides a more complete picture. This is based on a fundamental understanding of metal–allyl bonding interactions in solution and in the solid state. Furthermore, reactivity trends have been rationalized and new types of allyl‐specific reactivity patterns have been uncovered. Key features include 1) the exploitation of the different types of metal–allyl bonding (highly ionic to predominantly covalent), 2) the use of synergistic effects in heterobimetallic compounds, and 3) the adjustment of Lewis acidity by variation of the charge of allyl compounds.  相似文献   

19.
Reaction of CuX(2) (X(-)=Cl(-), Br(-), NO(3) (-)), NaOH, and 3[5]-tert-butylpyrazole (Hpz(tBu)) in a 1:1:2 molar ratio in MeOH at 293 K for three days affords [[Cu(3)(Hpz(tBu))(6)(mu(3)-X)(mu(3)-OH)(3)](2)Cu]X(6) (X(-)=Cl(-), 1; X(-)=Br(-), 2; X(-)=NO(3)(-), 3) in moderate yields. These compounds contain a centrosymmetric, vertex-sharing double-cubane [[Cu(3)(Hpz(tBu))(6)(mu(3)-X)(mu(3)-OH)(3)](2)Cu](6+) core, surrounded by a belt of six hydrogen-bonded X(-) ions. For 1 and 2, the ring of guest anions has near C(3) symmetry, that is slightly distorted owing to the axis of Jahn-Teller elongation at the central Cu ion. For 3 only, the NO(3)(-) guest ions are crystallographically disordered, reflecting their poor complimentarity with complex host. A similar reaction employing CuF(2) yields [[Cu(3)(Hpz(tBu))(4)(mu-pz(tBu))(2)(mu-F)(2)(mu(3)-F)](2)]F(2) (4), whose structure contains a cyclic hexacopper core with approximate C(2v) symmetry. Finally, an analogous reaction using Cu(NCS)(2) gives a mixture of trans-[Cu(NCS)(2)(Hpz(tBu))(2)] (5) and [Cu(2)(NCS)(2)(mu-pz(tBu))(2)(mu-Hpz(tBu))(Hpz(tBu))(2)] (6). The latter compound contains a Hpzt(Bu) ligand bridging the two Cu ions in an unusual kappa(1),mu-coordination mode. The variable temperature magnetic properties of 1-3 show antiferromagnetic behavior, leading to a S=1/2 ground state in which the seven copper(II) ions are associated into three mutually independent distinct spin systems. In confirmation of this interpretation, Q-band EPR spectra of solid 1 and 2 at 5 K also demonstrate a S= 1/2 spin system and exhibit hyperfine coupling to three (63,65)Cu nuclei. Unusually, the coupling is manifest as an eight-line splitting of the parallel feature, rather than the usual 10 lines. This has been rationalized by a spin-projection calculation, and results from the relative magnitudes of coupling to the three Cu nuclei. UV/Vis and mass spectrometric data show that 1-4 decompose to lower nuclearity species in solution.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号