首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
出于局部控制和健康安全监测的需要,为检测结构的损伤提供可能性,应用回传射线矩阵法,对方波脉冲作用下的有损伤连续梁进行损伤检测研究。连续梁结构的局部损伤用减小单元的杨氏模量来模拟。结果表明,当方波脉冲斜向作用时,通过结构上接收点处轴向速度波能准确判断损伤存在,确定损伤区域,估测损伤程度。  相似文献   

2.
A uniform cantilever beam under the effect of a time-periodic axial force is investigated. The beam structure is discretized by a finite-element approach. The linearised equations of motion describing the planar bending vibrations of the beam structure lead to a system with time-periodic stiffness coefficients. The stability of the system is investigated by a numerical method based on Floquet’s theorem and an analytical approach resulting from a first-order perturbation. It is demonstrated that the parametrically excited beam structure exhibits enhanced damping properties, when excited near a specific parametric combination resonance frequency. A certain level of the forcing amplitude has to be exceeded to achieve the damping effect. Upon exceeding this value, the additional artificial damping provided to the beam is significant and works best for suppression of vibrations of the first vibrational mode of the cantilever beam.  相似文献   

3.
Vibration mode of the constrained damping cantilever is built up according to the mode superposition of the elastic cantilever beam. The control equation of the constrained damping cantilever beam is then derived using Lagrange's equation. Dynamic response of the constrained damping cantilever beam is obtained according to the principle of virtual work, when the concentrated force is suddenly unloaded. Frequencies and transient response of a series of constrained damping cantilever beams are calculated and tested. Influence of parameters of the damping layer on the response time is analyzed. Analyitcal and experimental approaches are used for verification. The results show that the method is reliable.  相似文献   

4.
The problem of a uniform cantilever beam under a tip-concentrated load, which rotates in relation with the tip-rotation of the beam, is studied in this paper. The formulation of the problem results in non-linear ordinary differential equations amenable to numerical integration. A relation is obtained for the applied tip-concentrated load in terms of the tip-angle of the beam. When the tip-concentrated load acts always normal to the undeformed axis of the beam (the rotation parameter, β=0) there is a possibility of obtaining non-unique solution for the applied load. This phenomenon is also observed for other rotation parameters less than unity. When the tip-concentrated load is acting normal to the deformed axis of the beam (β=1), many load parameters are obtained for a tip-angle with different deformed configurations of the beam. However, each load parameter corresponds to a tip-angle, which confirms the uniqueness on the solution of non-linear differential equations.  相似文献   

5.
Deployable/retractable damped cantilever beams are a class of time-varying parametric structures which have attracted considerable research interest due to their many potential applications in the intelligent robot field and aerospace. In the present work, the dynamic characteristics of a deployable/retractable damped cantilever beam are investigated experimentally and theoretically. The time-varying damping, as a function of the beam length, is obtained by both the enveloped fitting method and ...  相似文献   

6.
An analysis is presented for the primary resonance of a clamped-hinged beam, which occurs when the frequency of excitation is near one of the natural frequencies,n . Three mode interaction (2 31 and 3 1 + 22) is considered and its influence on the response is studied. The case of two mode interaction (2 31) is also considered to compare it with the case of three mode interaction. The straight beam experiencing mid-plane stretching is governed by a nonlinear partial differential equation. By using Galerkin's method the governing equation is reduced to a system of nonautonomous ordinary differential equations. The method of multiple scales is applied to solve the system. Steady-state responses and their stability are examined. Results of numerical investigations show that there exists no significant difference between both modal interactions' influences on the responses.  相似文献   

7.
This study evaluates the response of a uniform cantilever beam with a symmetric cross-section fixed at one end, and submitted to a lateral concentrated sinusoidal load at the free extremity. The beam material is assumed to be homogeneous, isotropic and linear viscoelastic. Due to the nature of the loading and the beam slenderness, large displacements are developed but the strains are considered small. Consequently, the mathematical formulation only involves geometrical non-linearity. It is also assumed that the beam is inextensible (neutral axis length is constant) and that inertial forces are negligible, i.e., dynamic effects are insignificant and the system can thus be modeled quasi-statically. The beam is therefore subject to oscillations caused by the sinusoidal time-dependent load, leading to a transient response until the material stabilizes and the system exhibits a periodic response, which can be conveniently described in the frequency domain. The time domain solution of this problem is elaborated by considering the quasi-static response for each time interval. The mathematical equations are presented in dimensional and dimensionless forms, and for the latter case, a numerical solution is generated and several case studies are presented. The problem is governed by a set of non-linear ordinary differential equations encompassing functions of space and time that relate the curvature, rotation angle, bending moment and geometrical coordinates. In this study, an elegant solution is deduced using perturbation theory, yielding a precise steady-state solution in the frequency domain with considerable computational economy. The solutions for both time and frequency domain methods are developed and compared using a case study for a series of dimensionless parameters that influence the response of the system.  相似文献   

8.
In this paper we consider a Timoshenko beam with a damping moment applied to one of the endpoints. The elastic waves that develop from two sets of localised initial disturbances in the beam, are simulated and it is shown that properties of the spectrum adequately explain the features of the waves. We also show, using energy calculations, that the boundary moment is significantly more effective in reducing vibrations in the beam in one of the cases under consideration. The so-called second spectrum of the Timoshenko beam plays a prominent part in explaining this phenomenon.  相似文献   

9.
The transient heat transfer behavior in the case of heat removal from a cylindrical heat storage vessel packed with spherical particles was investigated experimentally for various factors (flow rate, diameter of spherical particles packed, temperature difference between flowing cold air and spherical particles accumulating heat, and physical properties of spherical particles). The experiments were covered in ranges of Reynolds number based on the mean diameter of spherical particles packed Red = 10.3–2200, porosity?=0.310 to 0.475, ratio of spherical particle diameter to cylinder diameterd/D = 0.0075–0.177 and ratio of length of the cylinder to cylinder diameterL/D=2.5–10. It was found that especially the flow rate and the dimension of spherical particles played an important role in estimating the transient local heat transfer characteristics near the wall of the cylindrical vessel in the present heat storage system. As flow rate and diameter of spherical particles were increased under a given diameter of the cylinder heat storage vessel, the mean heat transfer coefficient between the flow cold air and the hot spherical particles increased and the time period to finish removing heat from the vessel reduced. In addition, the useful experimental correlation equations of mean heat transfer coefficient between both phases and the time period to finish removing heat from the vessel were derived with the functional relationship of Nusselt numberNu d=f [modified Prandtl numberPr * (d/D), Red) and Fourier numberFo = f(d/D, L/D, Pr*, Red).  相似文献   

10.
Owing to the absence of proper analytical solution of cantilever beams for couple stress/strain gradient elasto-plastic theory, experimental studies of the cantilever beam in the micro-scale are not suitable for the determination of material length-scale. Based on the couple stress elasto-plasticity, an analytical solution of thin cantilever beams is firstly presented, and the solution can be regarded as an extension of the elastic and rigid-plastic solutions of pure bending beam. A comparison with numerical results shows that the current analytical solution is reliable for the case of σ0 〈〈 H 〈〈 E, where σ0 is the initial yield strength, H is the hardening modulus and E is the elastic modulus. Fortunately, the above mentioned condition can be satisfied for many metal materials, and thus the solution can be used to determine the material length-scale of micro-structures in conjunction with the experiment of cantilever beams in the micro-scale.  相似文献   

11.
Non-linear vibrations of axially moving beam with time-dependent tension are investigated in this paper. The beam material is modelled as three-parameter Zener element. The Galerkin method and the fourth order Runge-Kutta method are used to solve the governing non-linear partial-differential equation. The effects of the transport speed, the tension perturbation amplitude and the internal damping on the dynamic behaviour of the system are numerically investigated. The Poincare maps and bifurcation diagrams are constructed to classify the vibrations. For small values of the transport speed and the amplitude of periodic perturbation the system is asymptotically stable with its response tending to zero. With the increase of parameters one can observe the coexistence of attractors. Regular and chaotic motion occur when the internal damping increases.  相似文献   

12.
钢管混凝土柱-钢梁节点的力学性能分析   总被引:1,自引:0,他引:1  
基于弹塑性有限元理论建立了钢管混凝土柱-钢梁节点荷载-位移全过程非线性有限元模型,在单元分析中采用改进的AUL表述推导得到梁柱单元刚度矩阵方程,同时考虑了材料的物理非线性和单元的几何非线性,并编制了非线性有限元程序NLFEACFST。采用该模型对相关研究者和作者进行的节点试验进行了分析,理论计算结果与试验结果比较表明,该模型具有很好的适用性和精度。在理论分析模型得到试验结果验证的基础上,对典型的中柱节点进行了荷载-位移全过程非线性特性分析,并对影响节点承载力和荷载-位移骨架曲线的因素进行了参数分析,为进一步从理论研究钢管混凝土框架结构的力学性能创造了条件。  相似文献   

13.
The dynamic response of a strain-softening beam subjected to a transverse impulsive on its tip is investigated. A softening moment-curvature relation is assumed for the beam and a closed form solution is obtained for a special kind of load, which shows that there exists a softening region in the beam and this region propagates along the beam. This result indicates that, except for the possible discrete softening points with rotation discontinuity caused by the deformation localization[1], the existence of the softening region and its travelling along the beam are the essential features of the dynamic response of a strain-softening beam. The results also show that the failure of the beam should take place under a special load and the critical condition on which the dynamic failure occurs is given. The project supported by National Natural Science Foundation of China  相似文献   

14.
Stability analysis of nonplanar free vibrations of a cantilever beam is made by using the nonlinear normal mode concept. Assuming nonplanar motion of the beam, we introduce a nonlinear two-degree-of-freedom model by using Galerkin’s method based on the first mode in each direction. The system turns out to have two normal modes. Using Synge’s stability concept, we examine the stability of each mode. In order to check the validity of the stability criterion obtained analytically, we plot a Poincaré map of the motions neighboring on each mode obtained numerically. It is found that the maps agree with the stability criterion obtained analytically.  相似文献   

15.
Nonlinear response of a parametrically excited buckled beam   总被引:6,自引:0,他引:6  
A nonlinear analysis of the response of a simply-supported buckled beam to a harmonic axial load is presented. The method of multiple scales is used to determine to second order the amplitude- and phase-modulation equations. Floquet theory is used to analyze the stability of periodic responses. The perturbation results are verified by integrating the governing equation using both digital and analog computers. For small excitation amplitudes, the analytical results are in good agreement with the numerical solutions. The large-amplitude responses are investigated by using a digital computer and are compared with those obtained via an analog-computer simulation. The complicated dynamic behaviors that were found include period-multiplying and period-demultiplying bifurcations, period-three and period-six motions, jump phenomena, and chaos. In some cases, multiple periodic attractors coexist, and a chaotic attractor coexists with a periodic attractor. Phase portraits, spectra of the responses, and a bifurcation set of the many solutions are presented.  相似文献   

16.
The goal of this study is to investigate the vibration characteristics of a stepped laminated composite Timoshenko beam. Based on the first order shear deformation theory, flexural rigidity and transverse shearing rigidity of a laminated beam are determined. In order to account for the effect of shear deformation and rotary inertia of the stepped beam, Timoshenko beam theory is then used to deduce the frequency function. Graphs of the natural frequencies and mode shapes of a T300/970 laminated stepped beam are given, in order to illustrate the influence of step location parameter exerts on the dynamic behavior of the beam.  相似文献   

17.
The problem of free vibrations of a beam with free ends of variable cross section and mass, from which point masses (oscillators) are suspended by bars, is considered. It is shown that parametric resonances can occur in this oscillating system. Numerical examples showing the efficiency of the calculation method proposed are given. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 4, pp. 135–144, July–August, 2006.  相似文献   

18.
In this study, free vibration analysis of a rotating, double-tapered Timoshenko beam that undergoes flapwise bending vibration is performed. At the beginning of the study, the kinetic- and potential energy expressions of this beam model are derived using several explanatory tables and figures. In the following section, Hamilton’s principle is applied to the derived energy expressions to obtain the governing differential equations of motion and the boundary conditions. The parameters for the hub radius, rotational speed, shear deformation, slenderness ratio, and taper ratios are incorporated into the equations of motion. In the solution, an efficient mathematical technique, called the differential transform method (DTM), is used to solve the governing differential equations of motion. Using the computer package Mathematica the effects of the incorporated parameters on the natural frequencies are investigated and the results are tabulated in several tables and graphics.  相似文献   

19.
在刚度可靠性设计理论与灵敏度分析方法的基础上,研究了任意分布参数的梁结构刚度可靠性灵敏度分析问题,提出了刚度可靠性灵敏度分析的计算方法,给出了可靠性灵敏度的变化规律,研究了设计参数的改变对梁结构刚度可靠性的影响,为任意分布参数的梁结构刚度可靠性设计提供了理论依据。  相似文献   

20.
The free non-linear vibration of a rotating beam has been considered in this paper. The von Karman strain-displacement relations are implemented. Non-linear equations of motion are obtained by Hamilton’s principle. Results are obtained by applying the method of multiple scales to a set of discretized ordinary differential equations which obtained by using the Galerkin discretization method. This set contains coupling between transverse and axial displacements as quadratic and cubic geometric non-linearities. Non-linear normal modes and non-linear natural frequencies with or without internal resonance are observed. In the internal resonance case, the internal resonance between two transverse modes and between one transverse and one axial mode are explored. Obtained results in this study are compared with those obtained from literature. The stability and some dynamic characteristics of the non-linear normal modes such as the phase portrait, Poincare section and power spectrum diagrams have been inspected. It is shown that, for the first internal resonance case, the beam has one stable or degenerate uncoupled mode and either: (a) one stable coupled mode, (b) one unstable coupled mode, (c) two stable and one unstable coupled modes, (d) three stable coupled modes, and (e) one stable coupled mode. On the other hand, for the second internal resonance case, the beam has one stable or unstable or degenerate uncoupled mode and either: (a) two stable coupled modes, (b) two unstable coupled modes, and (c) one stable coupled mode depending on the parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号