首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
水是生命之源,人们日常生产生活离不开水。近年来水体污染日趋严重,已经危害到人类的健康。酚类化合物(Phenolic Compound)是一种广泛存在且很难降解的有机污染物,指的是芳香烃中苯环上的氢原子被羟基取代所生成的含羟基衍生物,毒性很强,对动植物及人类的生命活动有严重危害。实验研究对象选取间苯二酚(resorcinol,RES)和对苯二酚(hydroquinone,HYD)来配制待测样本,并且在其中3组预测样本中加入苯酚(phenol,PHE)作为干扰物,待测样本和空白溶剂分别用FS920稳态荧光光谱仪(edinburgh instruments,EI)扫描得到荧光光谱数据。对所得到的数据通过扣除空白溶剂法来消除拉曼散射的影响,得到的数据在消除干扰的同时最大程度保留下来原光谱所包含的重要信息。校正后光谱变得更加圆滑,荧光强度显著增强,因此,校正处理后的光谱信息更为准确。利用三维荧光光谱(EEM)结合平行因子分析(PARAFAC)和交替惩罚三线性分解(APTLD)两种二阶校正方法,分别完成在不含干扰物和含有干扰物、同时激发-发射光谱严重重叠时对间苯二酚、对苯二酚的快速、直接、准确测量,并给出定性、定量分析结果。PARAFAC算法对混合体系的组分数(即化学秩)较敏感,组分数选取过大易使其陷入计算"沼泽",迭代次数增多,计算耗时变长。故本文利用核一致诊断法(CORCONDIA)预估计出准确的组分数,保证PARAFAC算法更加快速准确。从定性分析结果知,当不含有干扰物时,PARAFAC能够准确分辨出间苯二酚和对苯二酚,二者荧光峰位置极为接近,很难用传统方法分辨,体现出将三维荧光光谱技术与化学计量学二阶校正方法相结合所具有的"二阶优势";定量分析结果给出,在有干扰物共存时,分别应用两种二阶校正法解析光谱数据结果显示:PARAFAC的浓度预测回收率为93.4%±0.5%~97.1%±1.0%,预测均方根误差小于0.190 mg·L^-1;APTLD的浓度预测回收率为95.9%±1.6%~97.2%±0.8%,预测均方根误差小于0.116 mg·L^-1,通过比较两种方法性能得:PARAFAC对待测物组分数敏感,对待分解的光谱数据严格线性要求高;而APTLD对混合物组分数不敏感,计算速度快,抗噪声能力较强,结果稳定,具有较明显的优势。  相似文献   

2.
用交替惩罚三线性分解算法(APTLD)结合三维荧光光谱法给出的二维数据对酪氨酸、苯丙氨酸和色氨酸进行了同时定性定量分析,为直接同时测定混合氨基酸中此三种物质提供了一种新的分析方法, 其测定相关系数分别为0.9987,0.9995和0.9993。采用超声波组织细胞破碎法对木槿叶中的氨基酸进行提取,利用APTLD法对提取液中氨基酸进行定量测定,测定相对标准偏差分别为0.84%,0.36%,1.59%, 回收率分别在101.0%~92.7%, 106.5%~93.0%, 103.0%~95.0%之间,方法简洁、快速、准确可靠,结果令人满意。  相似文献   

3.
三维荧光光谱技术与自加权交替三线性分解(SWATLD)算法相结合,对三类农药混合溶液进行检测。在乙腈溶剂中配制西维因、速灭威和三唑磷不同浓度比的混合溶液为测量样品(西维因、速灭威及三唑磷的最佳激发波长/发射波长分别为285/325,305/345和265/305 nm),利用荧光光谱仪获取样品的三维荧光光谱,经过空白扣除以及激发与发射校正,有效地去除仪器误差以及散射产生的影响,得到样品的真实光谱。采用基于自加权交替三线性分解算法对测得的光谱数据进行分析,得到的三种农药的平均回收率为96.9%±1.9%,99.8%±1.0%和100.8%±3.2%。根据SWATLD算法预测结果,计算三类农药的预测均方根误差(RMSEP)值为0.616×10-2,0.539×10-2和0.374×10-2 μg·mL-1,低于平行因子(PARAFAC)分析法预测结果的RMSEP值,且最低检测限均在0.005~0.022 μg·mL-1范围内。和PARAFAC算法相比较,突出了SWATLD算法的优势,表明该算法对光谱重叠严重的三类农药混合物有较好的分解能力。  相似文献   

4.
基于三维荧光光谱结合小波压缩与交替惩罚三线性分解(APTLD)对水中多环芳烃(PAHs)进行定性和定量分析,实验以萘(NAP)、芴(FLU)、苊(ANA)为测量样品。首先用FS920荧光光谱仪测量获得样品的三维荧光光谱数据,对数据进行激发和发射校正且去散射,得到真实光谱。为了解决三维荧光光谱数据的冗余信息,通过小波变换对实验光谱数据进行压缩,其压缩分数和数据恢复分数分别大于92%和95%。用APTLD对压缩后的光谱数据进行分析,体现了二阶优势,实验结果表明,在PAHs的荧光光谱严重重叠和有干扰物共存下,该方法仍能准确地测定,其回收率为94%~98%、预测均方根误差小于0.29 μg·L-1。  相似文献   

5.
基于三维荧光光谱结合交替惩罚四线性分解(APQLD)对痕量多环芳烃(PAHs)进行检测,实验以苊(ANA)和萘(NAP)为研究对象。首先利用小波变换对得到的三维荧光光谱数据进行压缩,以消除数据的冗余信息。分别在乙醇溶剂、甲醇溶剂以及超纯水条件下测定不同浓度的PAHs的激发-发射荧光光谱,并将其组合构建四维数据,利用APQLD对构建的四维光谱数据进行分析,并对比了PAHs在三种溶剂条件下各自的回收率。实验结果表明,用不同溶剂构建的四维数据能更准确地测定PAHs的浓度,其回收率更高;对比二阶校正以及其他四维校正算法,APQLD更能体现四维算法所具有的优越性;当因子数N=3时,ANA的回收率为96.5%~103.3%,预测均方根误差为0.04 μg·L-1;NAP的回收率为93.3%~110.0%,预测均方根误差为0.08 μg·L-1。  相似文献   

6.
多环芳烃(PAHs)类物质具有致畸、致癌、致突变的性质,严重污染生态环境,进而对人类的健康及动植物生长造成威胁。PAHs通过排污、大气沉降、地表径流等各种循环途径进入水环境中,由于种类众多且化学性质相似,常规的检测方法如化学滴定法、电化学法等很难实现快速准确的测定。为实现复杂体系中PAHs的定性与定量,工作中基于三维荧光光谱分析法,结合集合经验模态分解(EEMD)去噪与自加权交替三线性分解(SWATLD)二阶校正,对超纯水以及池塘水环境中的苊(ANA)和萘(NAP)进行分析测定。首先选择合理的浓度配制样本,用FS920荧光光谱仪测得样品的三维荧光光谱,利用空白扣除法将光谱数据中的散射消除,得到真实的光谱数据。然后对去除散射的数据进行EEMD降噪处理,该方法具有自适应性强、参数设置简便的优点,能够去除嘈杂信息,提高数据信噪比,并将去噪参数与快速傅里叶变换、小波滤波和经验模态分解进行比较。最后用SWATLD算法以“数学分离”代替“化学分离”,对超纯水和池塘水环境中光谱重叠的ANA和NAP进行定性识别和定量预测,该算法对组分数的选择不敏感,能够在未知干扰物共存情况下实现多组分目标分析物的同时检测,即具有“二阶优势”,并将预测结果与平行因子分析进行比较。结果表明空白扣除法能够成功将拉曼散射消除。EEMD降噪方法使ANA和NAP的光谱更加规整平滑,有效信息更加突出,该方法去噪后数据信噪比为16.845 2,均方根误差为11.136 6,波形相似系数为0.990 9,三项指标均优于快速傅里叶变换和经验模态分解等其他去噪方法,能达到小波滤波的去噪效果并且不用设置先验参数。利用SWATLD二阶校正方法得到验证样本中ANA与NAP的分解光谱与实际光谱基本吻合,平均预测回收率分别为96.4%和104.2%,预测均方根误差分别为0.105和0.092 μg·L-1;在存在未知干扰物的池塘水样本中,分解出的光谱依然能与实际光谱吻合,ANA与NAP两者的平均预测回收率分别为94.8%和105.5%,预测均方根误差分别为0.067和0.169 μg·L-1;与平行因子分析相比,两项指标均具有优势。  相似文献   

7.
应用三维同步荧光光谱法结合交替惩罚三线性分解(APTLD)来建立猪肉中莱克多巴胺残留含量的定量测定模型,以实现猪肉中莱克多巴胺残留含量的快速测定。首先分析了莱克多巴胺的荧光光谱产生机理和样本的三维同步荧光光谱;其次对猪肉提取液中的莱克多巴胺荧光的浓度猝灭现象进行了分析;然后应用核一致诊断法确定了APTLD的三线性分解组分数为2,并建立了猪肉提取液中莱克多巴胺的相对荧光峰值强度与训练样本中莱克多巴胺的相对荧光峰值强度之间的标定曲线,用于待测样本中的相对荧光峰值强度的校正;最后,建立了基于APTLD的猪肉中莱克多巴胺残留含量的三维同步荧光光谱预测模型。试验结果表明,该方法可以较好的解决猪肉样本中莱克多巴胺与背景之间的同步荧光光谱严重重叠的问题,省去了一些烦琐的“化学分离”过程,模型预测集的决定系数(R2)和均方根误差(RMSEP)分别为0.986 3和0.496 6 mg·L-1,达到了猪肉中莱克多巴胺残留含量快速定量测定目的。  相似文献   

8.
9.
多环芳烃(PAHs)是煤,石油,木材,烟草等燃料和有机高分子化合物等有机物不完全燃烧时产生的一种持久性有机污染物。迄今已发现有200多种PAHs,其中有多种PAHs具有致癌性。PAHs广泛分布于我们生活的环境中,水中的PAHs主要来源于生活污水,工业排水和大气沉降。使用三维荧光光谱法,结合BP神经网络与交替三线性分解(ATLD)算法对水中的PAHs进行定性和定量分析。以苊(ANA)和芴(FLU)2种PAHs为目标分析物,用甲醇(光谱级)制备样本。使用FS920稳态荧光光谱仪对样本进行检测,设置激发波长为200~370 nm,间隔10 nm记录一个数据;发射波长为240~390 nm,间隔2 nm记录一个数据。设置初始发射波长总是滞后激发波长40 nm,以消除一级瑞利散射的干扰。随后使用BP神经网络法对待测样本数据进行预处理。利用BP神经网络基于误差反向传播算法(error back propagation training,BP)原理,对测得的三维荧光数据进行数据压缩处理,该方法具有柔性的网络结构与很强的非线性映射能力,网络的输入层、隐含层和输出层的神经元个数可根据实际情况设定,并且网络的结构不同时,性能也有所差异。随后,用ATLD算法分解预处理后的三维荧光光谱数据。采用核一致诊断法确定待测样本的组分数为2。结果表明,ATLD算法分解得到两种PAHs(ANA和FLU)的激发、发射光谱图与目标光谱非常相似,能实现光谱重叠严重的PAHs(ANA和FLU)的快速定性和定量分析,实现了以“数学分离”代替“化学分离”。将预测样本导入训练好的BP神经网络中,得到处理后待测样本数据的网络均方差(MSE)均小于0.003,网络的峰值信噪比(PSNR)均大于120dB(数据压缩中典型的峰值信噪比值在30~40 dB之间,越高越好),可见BP神经网络对样本数据的压缩效果较好。BP神经网络训练后,得到输出值与目标值之间的拟合度高,拟合系数达0.998,具有较好的数据压缩效果。使用ATLD算法对待测样本进行分解后得到平均回收率为97.1%和98.9%,预测均方根误差为0.081 8和0.098 5 μg·L-1。三维荧光光谱结合BP神经网络和ATLD能够实现痕量PAHs的快速检测。  相似文献   

10.
设计水中油类污染物检测仪,采用脉冲氙灯作为光源,选择阶跃型多模纯石英光纤对激发光和发射光进行传输。采用非对称Czemy-Turner光路的高精度光栅单色器。应用该装置测定柴油、汽油和煤油的荧光光谱,0#柴油、97#汽油和煤油的最佳激发波长/发射波长分别为:290/330,270/300和280/330 nm。检出限:柴油(0.025 mg·L-1)、汽油(0.042 mg·L-1)和煤油(0.054 mg·L-1)。相对误差:柴油(2.55%),汽油(2.06%)和煤油(1.71%),实验表明所设计的检测仪具有较高的测量精度。配置不同浓度的柴油、汽油和煤油的混合溶液,测量其三维荧光光谱,采用自加权交替三线性分解算法对光谱数据进行分解,预测浓度及回收率均表明自加权交替三线性分解算法对混合油类物质有较高的分辨能力。  相似文献   

11.
为准确进行浓度检测,用Savitzky-Golay(SG)多项式曲面平滑法去除三维荧光光谱数据的冗余信息,分别采用平行因子法(PARAFAC)算法和交替惩罚三线性分解(APTLD)算法对光谱数据进行分解。设计多环芳烃类污染物的检测实验,分析了芴(FLU)、苊(ANA)及两者混合溶液的荧光光谱特性。FLU溶液在λ_(ex)/λ_(em)=302/322 nm处存在一个明显的荧光峰,并且存在连续侧峰。ANA溶液存在两个荧光峰,分别为λ_(ex)/λ_(em)=290/322 nm和λ_(ex)/λ_(em)=290/336 nm。在激发波长200~370 nm扫描范围和发射波长240~390 nm扫描范围内,FLU和ANA荧光光谱重叠严重。结果表明,两种算法均能分辨出FLU和ANA,并取得了很高的回收率,但APTLD算法的检测效果更好。  相似文献   

12.
应用英国Edinburgh公司生产的FLS920P荧光光谱仪实验测定了诱惑红、日落黄和亮蓝三种合成食品色素混合溶液的三维荧光光谱,将荧光光谱数据应用化学计量学中的平行因子分析(PARAFAC)和交替三线性分解(ATLD)二阶校正算法进行计算处理,对混合合成食品色素溶液中各组分进行了定性和定量检测。应用核一致诊断法,确定主成分数为3。PARAFAC算法解析后的回收率分别为98.75%±8.9%,97.22%±2.9%和99.00%±2.9%,ATLD算法解析后的回收率分别为99.78%±5.9%,92.52%±5.5%和97.23%±5.8%。结果表明,两种方法都可以用于三个组分的直接快速测定,PARAFAC算法更稳定,更具优势。  相似文献   

13.
苯酚和麝香草酚等酚类化合物对人体和动植物有着严重危害,且这些酚类化合物往往同时存在于水体。由于苯酚和麝香草酚的激发和发射光谱重叠严重,常规荧光方法不能实现直接快速测定。基于三维荧光光谱结合四维平行因子(4-PARAFAC)算法,对存在未知干扰物的湖水中苯酚和麝香草酚进行定性和定量分析。利用三维平行因子和四维平行因子算法分解光谱数据,探索三阶校正算法的“三阶优势”。通过引入温度维来构建四维数据阵,将不同温度下扫描得到的激发发射矩阵沿样本维叠加得到四维数据阵,结合基于四维平行因子的三阶校正算法对目标分析物进行定性定量分析。为避免溶剂散射和仪器的影响,需要对扫描得到的激发发射矩阵信号进行预处理。通过空白扣除法和Delaunay三角内插值法去除激发发射矩阵中散射信号,再进一步进行激发发射校正,得到真实光谱。然后分别使用基于平行因子的二阶校正算法和基于四维平行因子的三阶校正算法对光谱数据进行分析,对比两种算法的分析结果。结果表明,四维数据阵并不是三维激发发射矩阵简单的叠加,得到的四维数据可能含有丰富的高维信息,有助于改善对分析物的测量结果。四维平行因子算法解析得到的湖水中苯酚和麝香草酚的平均回收率分别为97.7%±9.2%和96.5%±8.8%,预测均方根误差为0.047和0.057 μg·mL-1,预测相对误差低于10%,分析结果优于三维平行因子(平均回收率分别为105.7%±15.3%和111.0%±3.6%,预测均方根误差为0.090和0.056 μg·mL-1,预测相对误差高于10%)。实验表明,样本中存在复杂干扰背景和数据共线性严重时,三阶校正算法能够得到比二阶校正算法更满意的结果,为复杂体系中苯酚和麝香草酚的检测提供了可靠方法。  相似文献   

14.
酚类化合物在冶金、炼油、机械制造、医药、农药和油漆等工业有广泛的应用,但酚类化合物具有毒性,若不加以处理将会对环境造成污染。水是生命之源,水环境中酚类化合物检测显得尤为重要。三维荧光光谱分析法具有灵敏度高、检测速度快、预处理方便和痕量检测等特点,二阶校正分析法可以在混合物中分辨出感兴趣的成分。采用三维荧光光谱结合二阶校正方法对水环境中酚类化合物进行测定。实验选用间甲酚和间苯二酚作为被测物质,配置添加干扰物和不添加干扰物两类样本,通过FLS920稳态荧光光谱仪测得8个校正样本和8个预测样本的三维荧光光谱数据,并对其进行数据预处理,扣除原始光谱中所包含的散射干扰,并对原始光谱数据进行激发/发射校正,然后采用db3小波函数生成的小波包对光谱数据进行数据压缩,去除光谱数据中的冗余信息,其中压缩分数达到91.67%,恢复分数达到96.62%。然后分别采用平行因子分析(PARAFAC)和自加权交替三线性分解(SWATLD)两种二阶校正方法对预处理后的光谱数据进行定性和定量分析。根据核一致分析法结合残差判别分析法的分析结果,设定未添加干扰物样品组分数为2,添加干扰物样品组分数为3。定性分析结果显示,无论有无添加干扰物,两种二阶校正法都能准确的分辨出样本中的间甲酚和间苯二酚,其中间甲酚的荧光峰位置为λem=298 nm/λex=274 nm;间苯二酚的荧光峰位置为λem=304 nm/λex=275 nm。定量分析结果显示,用PARAFAC算法测定不添加干扰物的样本时,对间甲酚和间苯二酚浓度的平均回收率分别达到了93.37%±4.92%和95.19%±5.25%;测定添加干扰物样本时,对间甲酚和间苯二酚浓度的平均回收率达到92.09%±2.64%和97.08%±5.26%。用SWATLD算法测定不添加干扰物样本时,对间甲酚和间苯二酚浓度的平均回收率分别达到了93.11%±4.73%和96.80%±5.04%;测定添加干扰物样本时,对间甲酚和间苯二酚浓度的平均回收率达到97.30%±4.52%和96.92%±5.61%,且两种二阶校正方法得出的预测样本均方差(RMSEP)均小于0.03 mg·L-1。实验结果表明,在荧光光谱峰位置相近、光谱严重重叠且有干扰物的情况下, PARAFAC和SWATLD两种二阶校正算法都能对水溶液中的酚类化合物进行快速、准确地测定。  相似文献   

15.
冷鲜猪肉的三维荧光光谱特征研究   总被引:1,自引:0,他引:1  
利用三维荧光光谱技术,研究了冷鲜猪肉三维荧光光谱特征,主要探讨了不同温度存储条件下冷鲜猪肉荧光峰的位置和荧光峰所处区域内荧光强度平均值随存储时间变化的规律,并初步判断了荧光物质的种类,为实现基于三维荧光光谱技术快速、无损检测冷鲜猪肉新鲜度奠定了理论基础。实验结果表明,不同温度存储条件下样本的三维荧光光谱图中均含有2个明显的荧光峰(Peak A和Peak B),它们所在位置的激发波长(λex)/发射波长(λem)范围分别为:λex/λem约为250~310 nm/300~400 nm和约为300~450 nm/400~550 nm。其中,Peak A为类蛋白荧光,Peak B为脂质氧化产物荧光。此外,实验还发现,两个荧光峰在各自所处区域内荧光强度的平均值随存储时间变化的趋势不受存储温度影响,均是Peak A在λex/λem=250~310 nm/300~400 nm区域内荧光强度的平均值(IA)逐渐下降,Peak B在λex/λem=300~450 nm/400~550 nm区域内荧光强度的平均值(IB)逐渐上升。但IAIB的变化速率受存储温度影响,冷藏条件下比室温条件下变化慢。  相似文献   

16.
比较研究了科学岛、巢湖和太湖不同来源水样的三维荧光光谱、COD值和DOC值.结果表明巢湖过滤水样COD值与DOC值线性相关(r=0.928 9);三维荧光光谱法测得的科学岛水样溶解有机物(DOM)浓度、类蛋白荧光强度(Ipro-like)、类腐殖质荧光强度(Ihum-like)均与COD值线性相关(r分别为0.821 72,0.84651和0.836 89);而三维荧光光谱法测得的巢湖和太湖水样的DOM浓度、Ipro-like和Ihum-like则与COD值无明显线性关系.上述结论与前人研究结果产生分歧,文章对原因进行了分析,并阐述了利用荧光光谱法测量水体有机污染综合指标的可行性和必要前提.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号