首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 741 毫秒
1.
利用可调谐半导体激光吸收光谱技术(TDLAS)对痕量气体进行检测时,环境温度变化以及激光器控制电路的噪声常常使得激光器输出波长发生漂移,影响了气体浓度测量的准确性。以开放光路的激光吸收光谱氨气检测系统为例,在分析激光器扫描中心波长随电流变化规律的基础上,提出了基于电流控制的自适应锁定扫描中心波长的方法。研究了基于参考校准光谱的光谱数据对准算法,实现了开放大气中氨气浓度的实时监测。结果表明,波长锁定大大提高了痕量气体浓度反演的准确性和稳定性。氨气浓度具有日变化周期:上下班时段浓度上升,中午达到最大值,夜间浓度降低,系统检测限为3.8mg.m-3.m。  相似文献   

2.
可调谐半导体激光吸收光谱技术(TDLAS)利用激光器的窄线宽和波长调谐特性,使其扫描被测气体的单个吸收峰,实现痕量气体的高分辨率、高灵敏度快速检测。通过分析近红外波段的乙烯吸收谱线特性,选取1 626.8 nm附近的吸收峰作为检测谱线,研制了基于white池结构的TDLAS检测系统,结合波长调制和二次谐波检测,对体积分数为20~1 200 ppmv的乙烯气体进行了测量,推算该系统的检测下限约为10 ppmv。  相似文献   

3.
调谐半导体激光吸收光谱自平衡检测方法研究   总被引:12,自引:0,他引:12  
可调谐半导体激光吸收光谱技术(TDLAS)是利用半导体激光器的波长调谐特性,扫描待测气体特征吸收线,从而获得待测气体的浓度信息。基于可调谐半导体激光吸收光谱的自平衡检测方法能够有效地消除激光器光强波动等共模噪声和其他同性干扰的影响。实验表明自平衡检测方法可以获得较理想的结果,检测限低于体积比1.2×10-6,与直接吸收光谱法相比降低了一个数量级。自平衡检测电路简单,自带的电子增益补偿机制能够自动进行平衡探测,该方法不用加信号调制和锁相放大器,直接探测待测气体的吸收光谱,从而降低成本,减小系统装置体积,易于集成为便携式痕量气体检测仪。  相似文献   

4.
基于光纤光栅的可调谐半导体激光器   总被引:1,自引:4,他引:1  
本文利用光纤光栅(FBG)形成外腔反馈及F-P半导体激光器的多模特性,得到波长稳定、可调谐的半导体激光光源,系统研究了不同反馈比率对激光器光谱特性的影响.通过向FBG施加轴向拉力和压力可实现10nm的波长调谐,得到一系列波长间隔0.94nm的激光输出,边模抑制比达35dB,光谱线宽小于0.2nm.  相似文献   

5.
李金义  杜振辉  齐汝宾  徐可欣 《光学学报》2012,32(1):130004-311
针对当前可调谐半导体激光器吸收光谱(TDLAS)技术中调谐范围、调谐时间以及系统复杂性方面存在的不足,提出了利用激光器模块中的热电制冷器(TEC)和负温度系数(NTC)热敏电阻等元件对激光二极管(LD)进行温度宽谱调谐的方法,并在快速温度调谐过程中精确计算激光器的辐射波长。利用温度调谐二极管吸收光谱技术在3s的时间内测得了CO2气体在6320~6336cm-1波段的高分辨率吸收光谱。在此波段共测得8个较强吸收线。将得到的光谱参数与HITRAN 2008中的数据比较,吸收线位置、线强以及半峰全宽(FWHM)的偏差分别小于1%,3%以及6%。另外,测得的14条较弱的吸收谱线也与谱库中的谱线参数吻合。  相似文献   

6.
可调谐半导体激光吸收光谱作为一种高灵敏度、高选择性、非侵入的痕量气体实时检测技术,已在大气监测、工业控制等方面得到广泛应用。采用一种新型宽带可调谐的SG-DBR半导体激光器(可调谐范围1 520~1 570 nm)作光源,并通过自编程序对该激光器设定了18个通道,输出波长分别对应CO,CO2以及H2O的吸收谱线中心位置,设计和构建了一个基于近红外可调谐半导体激光吸收光谱的多组分气体光谱测量系统,描述了相关的光学系统设置,结合波长调制(wm)的二次谐波技术测量其中14个通道(分别对应CO和CO2的吸收谱线)的吸收光谱,系统获得的CO和CO2峰值吸收探测极限能够达到10-5。实验结果验证了SG-DBR激光器在波长调制吸收光谱多组分气体检测领域的可行性。在实际应用过程中使用单个SG-DBR激光器可以实现多组分气体的同时测量,有效降低设备成本和系统复杂性。  相似文献   

7.
基于离轴腔增强光谱检测技术,以可调谐近红外半导体激光器作激光光源,以反射率为99.97%平凹镜组成的光学谐振腔作吸收池,建立了高灵敏度离轴腔增强光谱污染气体检测系统,获得了N2O气体在6 561.39cm-1的吸收光谱.通过对不同浓度N2O样品气体吸收光谱测量,建立了气体浓度与光谱线强度的关系,讨论了气体压强与光谱线宽、检测灵敏度等问题.研究结果表明,离轴腔增强光谱检测技术的检测极限达到了86ppm,是一种设备成本低、操作方便、灵敏度较高、稳定性良好的吸收光谱技术,可以很好地实现微量气体的快速检测.  相似文献   

8.
宽条形半导体激光器广泛应用于激光泵浦、激光加工等领域。针对宽条型半导体激光器输出光谱宽、调谐范围小的问题,采用衍射效率分别为28%和55%的反射式衍射光栅作为反馈元件构建了宽条形970 nm波长光栅外腔半导体激光器。研究了Littrow结构激光器参数对其性能(调谐范围、功率、阈值电流、线宽)的影响。实验结果表明,通过结构优化可得到窄线宽可调谐激光输出,适当地提高温度和使用较高衍射效率的光栅可增加激光器调谐范围,并且较高衍射效率的光栅可降低激光器的阈值电流。基于S偏振入射方式的光栅外腔激光器最大可实现27.87 nm的波长调谐范围,光谱线宽压窄至0.2 nm,输出功率可达1.11 W。  相似文献   

9.
针对0.5%VOL以下的低浓度甲烷气体,设计了一种基于近红外可调谐半导体激光吸收光谱的光学式甲烷气体传感器.调谐激光器扫描甲烷气体位于1 653.72 nm处的吸收谱线,采用一次谐波"峰-平比"对气体浓度进行测量.该方案能够有效地消除激光器光强波动和其它同类光功率波动所带来的影响,通过标定后的测试实验表明传感器测量准确...  相似文献   

10.
可调谐二极管激光吸收光谱技术是一种应用非常广泛的吸收光谱测量技术.利用宽带可调谐窄线宽光源进行吸收光谱测量的超光谱吸收技术可以在单次扫描中获取一段连续光谱的所有吸收数据,可大大提高可调谐二极管激光吸收光谱技术的数据信息容量和光谱诊断能力.分析了在2μm波段对水进行超光谱吸收测量时对激光器输出线宽的具体要求.利用掺铥光纤在2μm波段较宽的发射谱,采用可调谐法布里-珀罗滤波器和光纤可饱和吸收体相结合的技术方案搭建了一台宽带调谐窄线宽的2μm光纤激光器.获得了1840—1900 nm约60 nm范围的调谐光谱输出,激光器静态线宽仅为0.05 nm.利用该光源对空气中水在2μm波段的吸收光谱数据进行了超光谱吸收测量,在1856—1886 nm约30 nm的光谱范围内分辨了35条水的吸收谱线.通过对不同线宽条件下1870—1880 nm范围内的理论吸收光谱数据进行对比发现,测量数据无法有效分辨分别位于1873 nm和1877 nm处与强吸收线相邻的两条吸收谱线,且测量结果与激光线宽在0.08 nm条件下的HITRAN2012光谱数据库最为接近.这表明,在动态扫描过程中激光器的线宽得到了展宽.  相似文献   

11.
王迪  李玉爽  濮御  吕妍  耿金剑  李栋 《应用光学》2020,41(2):348-353
基于激光吸收光谱技术的气体检测手段具有非接触,分辨率高,灵敏度高等优势,然而激光在线检测气体过程易受温度变化导致其浓度测量偏差增大。以氨气为研究对象,探究了温度对氨气吸收谱线线强的影响规律及影响机制,搭建了非常温条件(298 K至323 K)氨气激光检测实验平台,提出了气体吸光度-温度关联式法对浓度反演结果进行修正处理。结果表明:浓度一定时,总配分函数比值rQ是氨气分析吸收线强随温度升高过程中的主导控制因素,总配分函数比值与温度的负相关关系造成氨气光谱吸光度随温度升高而降低;修正前浓度反演值随着温度升高而降低,温度达到323 K时,浓度反演值为3.13%,与标准浓度值相比其误差高达37.4%,经过修正后的浓度反演值与标准浓度值的相对误差在0.2%~1.4%范围内。  相似文献   

12.
可调谐半导体激光吸收光谱(TDLAS)由于具有高灵敏度、高分辨率、非侵入及实时检测等特点,被广泛应用于燃烧诊断、痕量气体监测、工业过程控制等领域中。波长调制光谱(WMS)的二次谐波(2f)检测是最常用的TDLAS气体传感方法之一。激光器作为TDLAS-WMS在线检测系统中最核心的部件之一,在长期运行过程中会由于其工作温度等因素变化,引起输出激光波长漂移和2f背景信号基线变化,从而导致气体浓度反演的精确度和TDLAS-WMS在线检测系统的稳定性降低。针对上述问题,根据NO气体分子在中红外波段5.176~5.189 μm的基频吸收特性,选择峰值发射波长位于5.184 μm的分布反馈式连续波量子级联激光器(DFB-CW QCL),分析了输出激光中心波长对应的峰值采样点位置随采样时间变化的漂移规律和2f吸收及其背景信号的漂移特性。基于上述分析,提出了以2f信号平均峰峰值替代2f信号峰值建立气体浓度反演模型以修正2f背景信号基线漂移,并结合以信噪比最优为2f背景信号波长漂移修正原则的2f背景信号漂移综合修正方法,以消除TDLAS-WMS在线检测系统长期连续检测过程中2f背景信号漂移对气体浓度反演结果的不利影响。研究结果表明,2f信号平均峰峰值随配置的NO样气浓度的增加而增大,这两者呈现较好的线性关系,其拟合曲线的线性拟合度R2达到了0.999 9。在使用体积浓度为20×10-6 NO气体样品开展的连续60 min监测实验中,波长漂移修正后,反演浓度的标准偏差由波长漂移修正前的0.19×10-6下降到了0.07×10-6,反演浓度的最大相对误差由波长漂移修正前的6.30%下降到了3.85%,相对误差均方值由波长漂移修正前的24.39%下降到了9.99%。结果显示,该2f背景信号漂移综合修正方法可以有效地抑制2f背景信号漂移对气体浓度反演结果的影响,显著提高了TDLAS-WMS在线检测系统连续监测的灵敏度、精确度和稳定性。  相似文献   

13.
贾巍  何莹 《应用光学》2018,39(6):809-814
随着工业化进程加快,大气污染监控已受到广泛关注,为实现工业过程痕量气体浓度的准确监测,采用可调谐半导体激光吸收光谱技术(TDLAS)搭建了气体浓度在线监测系统,并以LabVIEW为软件开发平台完成了可视化界面。重点设计了数据处理功能及浓度反演算法,通过同步获取的环境压力参数对特征吸收光谱的有效拟合范围进行修正,提高吸光度信号的准确性,再通过读取的环境温度参数修正气体吸收线强以获得精确的浓度结果。将该系统应用于高温氨浓度在线测量实验中,获得高温不同压力下的氨气浓度测量结果。实验结果表明,在500 K温度下,不经过压力、温度参数修正的最大氨浓度反演偏差为18.81%,通过参数判断后再进行光谱提取和修正,得到浓度最大偏差为3.96%。该系统能够准确反演不同环境参数(压力、温度)下的气体浓度,实现了工业高温现场气体的实时、精确在线测量。  相似文献   

14.
由于NH3在大气气溶胶化学中具有重要作用,所以快速和精确反演NH3浓度对环境问题非常重要.本文以9.05μm的室温连续量子级联激光器(quantum cascade laser,QCL)作为光源,采用波长扫描直接吸收可调谐二极管激光吸收光谱(tunable diode laser absorption spectroscopy,TDLAS)技术,研究了QCL在1103.4 cm–1的光谱特性,获得了激光器控制的温度电流与波长的关系.设计了QCL二级温控的低压实验平台,测量氨气在1103.4 cm–1处的6条混叠吸收线,在降低压强的情况下谱线展宽变小,使混叠光谱分离,由此计算各条吸收线的线强,进一步对测量不确定度进行分析.针对混叠严重的光谱提出了低压分离单光谱精确反演气体浓度的方法,并进行了实验验证.通过与HITRAN数据库进行结果对比,得出氨气在1103.4 cm–1的实验测量线强值与数据库偏差为2.71%-4.71%,实验测量线强值的不确定度在2.42%-8.92%,极低压条件下反演浓度与实际值的偏差在1%-3%.  相似文献   

15.
为了消除LIBS实际测量光谱谱线与标准的LIBS光谱谱线间存在的差值,提高元素测量精准度,提出了针对激光诱导击穿光谱测量偏差的物理影响因素研究。实验在相同条件下,对烧蚀孔效应和光谱波长的关系进行了测试,研究了激光诱导击穿光谱高温Mg等离子体在1.00~3.00 μs范围采样延时下的斯塔克(Stark)展宽数据,从而得出烧蚀孔效应和斯塔克延时展宽等物理因素对采集光谱造成的具体影响。研究结果及方法完全可以应用于其他激光诱导击穿光谱实验系统的误差分析,这对于提高LIBS技术的物质元素测量精准度,研究LIBS技术的最佳采样延时时间,具有重要意义。  相似文献   

16.
可调谐半导体激光器在调谐过程中的瞬时光谱特性,如瞬时的波长、调谐率、功率、线型和线宽等参数影响着以激光器为光源的光学测量和光相干通信系统的精度。然而,能够同时测量这些瞬变参数的技术至今未见报道。提出了一个基于时频分析的测量半导体激光器在调谐过程中瞬时光谱参数的方法,利用一个短时延外差测量系统,利用激光器瞬时光谱参数与差拍信号瞬时参数的关系,最终获得了半导体激光器在连续电流调谐过程中的瞬时光谱。测量系统采用了10 cm光程差的Mach-Zehnder干涉仪,调谐电流是幅度为20~120 mA、频率是1 kHz的锯齿波,差拍信号可视为直流信号、载波信号与噪声的叠加,按照短时延相干光测量原理,差拍信号中的直流分量幅度的大小反映了激光器输出光信号的功率;载波信号是一种多项式相位信号,由其频率可以推算激光器输出光谱的中心频率或波长;噪声信号则与激光器输出光谱的线型和线宽相关,通过对噪声信号进行时频分析,可以获知激光器在连续电流调谐过程中每一时刻或每个电流下的瞬时线型、线宽。采用了趋势局部均值分解方法对差拍信号进行了准确分离,并对分离信号分别进行处理,同时获知了半导体激光器在调谐过程中的瞬时输出光功率、光波长、调谐率及线型、线宽。在去掉弛豫部分后截取的整周期差拍信号对应的调谐电流60~115 mA变化范围内,半导体激光器(FRL15DDR0A31-18950, Furukawa)瞬时输出光功率变化范围是5.16~10.6 mW,瞬时光波长变化范围为1 579.2~1 579.6 nm;激光器的瞬时调谐率在0.004 8~0.011 5 nm·mA-1范围内单调变化;线宽是852.55~954.95 kHz,呈非线性随机分布。基于短时延、局部均值分解和时频分析方法的瞬时光谱参数测量系统可以准确得到各瞬时光谱参数,测量结果与激光器的静特性相符,且测量系统结构简单,使我们更深入地理解激光器的工作原理,具有广阔的应用前景。  相似文献   

17.
气体压力光学非接触测量是目前激光技术重要应用领域之一,其中气压测量过程中温度耦合问题是现在面临的研究难点。故而提出一种光谱测量技术与激光干涉技术组合测量方法,通过积分吸光度和折射率融合的方式实现气体压力、温度解耦的目的。分析可调谐半导体激光光谱技术(TDLAS)的直接吸收法测量原理和基于折射率的激光干涉测量原理,建立基于吸收光谱的气压测量模型和基于折射率的激光干涉气压测量模型,通过利用三次多项式拟合吸收谱线强度函数的方式,建立了基于积分吸光度和折射率的气体压力、温度解耦的数学模型。实验搭建了基于TDLAS技术和激光干涉技术的气体压力检测系统,采用中心波长为2 004 nm的可调谐半导体激光器和波长为632.8 nm的激光干涉仪,气室长度为24.8 cm,将CO2作为研究对象,并以高精度压力控制器和温度传感器的测量结果分别作为压力温度参考值,以真空为背景信号,在室温环境中测量并计算出气体压力变化后积分吸光度值和折射率值,进而解算得到气体压力和温度值。实验结果显示:压力测量结果最大相对误差为3.61%,最小相对误差为0.5%,测量平均相对误差为1.99%;在以开尔文温度为前提下,温度解算结果最大绝对误差为7.66 K,最小绝对误差为0.78 K,测量平均绝对误差为3.29 K,测量结果与参考结果具有较高的吻合度,该研究可为以后光学法测量气体压力温度影响分析提供参考。  相似文献   

18.
Film thickness is not only a crucial parameter in producing processes, such as semiconductor and optics production, but also a monitored variable in chemistry and biology, for example for tissue microscopy. Many working principles have been demonstrated and are in use in different fields due to their different limitations (observation film thickness, accuracy, measurement speed, etc.). One of these working principles is thin film reflectometry (TFR). One method is based on a laser source and monitors the reflected intensity over growing film time. Another one employs a spectrally broad light source and measures the reflected intensity using a spectrometer. We introduce and demonstrate a measurement system based on a tunable laser stage. There are several different setups for laser wavelength tuning. One of the most promising solutions is based on monolithic laser diodes. Rapid tuning of the lasers wavelength is crucial for achieving high measurement rates. Monolithic laser diodes offer highest tuning rates and hence high performance. On the other hand, mechanically tunable lasers show broadband spectra that result in higher thickness accuracy in this particular application. Hence, we show a comparison of thin film measurements with a monolithic and a mechanically tunable laser source. This comparison shows that the measurement accuracy of the monolithic laser diode can compete with mechanical tuning. Furthermore, it is a promising approach when measurement tuning speed is an issue.  相似文献   

19.
针对可调谐半导体激光器吸收光谱(TDLAS)基于多普勒效应测速方法在燃气流速测量中频移量小、误差较大的问题,提出了结合固定波长吸收光谱法与互相关法的燃气速度测量方法。考虑碳氢燃料燃烧产物特点,选取H2O分子7 185.597 cm-1吸收谱线,通过布置上下游两束固定波长吸收光谱测点,分析两信号的互相关特性来计算得到燃气速度。利用平面火焰炉实验系统对该方法测量燃气速度开展实验研究,获得了变工况下燃气速度随时间的变化情况。在相同工况下开展数值计算,将测量结果与数值模拟计算结果进行对比,相对偏差不超过8%。同时将该方法初步应用于煤油燃料火箭基组合循环发动机(RBCC)的高速羽流速度测量,获得了上下游探测器脉动信号,通过互相关分析计算得到了羽流速度,验证了该方法的可行性。实验结果表明,该燃气速度测量方法具有测量范围宽、测量精度高,环境干扰小等优点。提出的方法为发动机燃气速度测量提供一种简单可靠的测量方法。  相似文献   

20.
We present and characterize a laser system for the spectroscopy on highly charged 209Bi82+ ions at a wavelength of 243.87?nm. For absolute frequency stabilization, the laser system is locked to a near-infra-red laser stabilized to a rubidium transition line using a transfer cavity based locking scheme. Tuning of the output frequency with high precision is achieved via a tunable rf offset lock. A?sample-and-hold technique gives an extended tuning range of several THz in the UV. This scheme is universally applicable to the stabilization of laser systems at wavelengths not directly accessible to atomic or molecular resonances. We determine the frequency accuracy of the laser system using Doppler-free absorption spectroscopy of Te2 vapor at 488?nm. Scaled to the target wavelength of 244 nm, we achieve a frequency uncertainty of σ 244 nm=6.14?MHz (one standard deviation) over six days of operation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号