首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tables are presented for convenient calculation of the basic parameters of the revised Smith-Ewart theory. For the methyl methacrylate (MMA)/sodium lauryl sulfate (SLS)/K2S2O8, and for the styrene/SLS/K2S2O8 reaction mixtures parameters are presented from which the absolute values of the following quantities can be conveniently calculated for any temperature, soap, and initiator concentration: particle number, particle radius, conversion where particle nucleation stops, rate and molecular weight in interval II, the interval after completion of particle nucleation and before the disappearance of monomer droplets. The theoretical predictions are compared to new experimental data and to those from the literature. The available data confirm the theoretical prediction that particle nucleation stops after a very small amount of polymer is formed, of the order of 0.01 cc. polymer/cc. water in most recipes. The theory and experiments are in good qualitative agreement for the conversion rate prior to completion of particle formation: the conversion rate rises with time and, when particle nucleation stops, it levels off. Excellent quantitative agreement can be obtained between theoretical and experimental particle size values. In the experiments of this laboratory the SLS concentration was varied 60-fold, the K2S2O8 concentration was varied 140-fold and the difference between theoretical and experimental poly(MMA) particle radii was always less than about 20%. Similar good agreement was obtained for polystyrene over the temperature range 30–90°C. Some polystyrene data from the literature with carboxylic soaps give just as good fit as the data with SLS of this laboratory. The predicted proportionality between particle number and the product of 0.6 power of soap concentration and of 0.4 power of initiator concentration was observed for several monomers. The theoretical predictions for the rate and molecular weight obtained in interval II are valid only for relatively low initiator and high soap recipes. For recipes for MMA and styrene the rate data are in good agreement with those calculated from the theory. The theory also correctly predicts the order of magnitude of the experimental molecular weights. For several monomers the rate and molecular weight vary with initiator and soap concentrations in a manner close to theoretical predictions.  相似文献   

2.
The role in and effects on the emulsion polymerization of acrylonitrile (AN) of three different groups of emulsifiers, i.e., low molecular emulsfiers, well-known water-soluble polymers, and new water-soluble polymers containing a sulfonate group have been investigated by a dilatometry and electron microscopy. The major part of this paper concentrates on the study of the relation between the properties of the third group of emulsifiers and emulsion polymerization characteristics of AN such as rate, degree of polymerization, diameter and number of particles, and the degree of dispersion, by adding copolymers of AN and sodium p-styrenesulfonate (SSS) having various compositions. In the emulsion polymerization of AN, the hydrophobic portion of the emulsifier seems to act as a kind of nucleus around which polymer molecules precipitate and particle formation may occur, and the hydrophilic portion stabilizes the polymer particles thus formed. As the number of particles and the degree of dispersion increases, the total surface of the particles increases, which may raise the overall rate of polymerization due mainly to an increased polymerization on the surface of the polymer particles. The well-known emulsifiers may be classified by the properties and ratio of the nucleus portion and the stabilizing portion. The unusual effect of emulsifiers on the degree of polymerization may be explained by a chain-transfer mechanism.  相似文献   

3.
On the basis of a rather general scheme of elementary reactions of radical polymerization conducted in the presence of iniferters, kinetic equations have been derived describing this process over the whole range of monomer conversion. Proceeding from thorough analysis of these equations, different regimes of polymerization have been found that differ in values of order with respect to the iniferter and monomer of the initial rate of polymerization. Conditions for kinetic parameters have been formulated whose fulfillment predetermines that radical polymerization occurs according to the iniferter mechanism. © 1994 John Wiley & Sons. Inc.  相似文献   

4.
Isothermal emulsion polymerization at 60°C of styrene in a batch reactor were studied by using sodium lauryl sulfate as surfactant and potassium persulfate as initiator source. The concentrations of surfactant and initiator were varied during the runs. The polymerization evolution was followed as samples were taken at regular intervals. These emulsion samples were analyzed for monomer conversion, rate of polymerization, as well as for the size and the size distribution of the particles. The molecular weight and molecular weight distribution were obtained by gel permeation chromatography. Our study showed that fresh nucleation takes place even at high conversion, causing a continuous shifting toward broadening of particle size distribution. Contrary to the theory of Smith and Ewart, which assumes a constant number of particles during interval II of the polymerization reaction, our digital simulation of the reaction presents better experimental results with a variable number of particles, and indicates that the Hui–Hamielec model for termination constant kt as function of conversion is not applicable under our working conditions.  相似文献   

5.
A polymerizable surfactant, sodium dodecyl allyl sulfosuccinate (TREM LF-40; Henkel) and its nonpolymerizable counterpart were used in comparative studies of the emulsion polymerization of vinyl acetate. The conversion-time behavior differed for the two surfactants; the TREM LF-40 showed a decrease in the polymerization rate with increasing concentration while its hydrogenated derivative showed the opposite behavior, the rate increasing with increasing surfactant. Particle size analysis revealed a decreasing particle size with increasing surfactant concentration for both series of reactions. An explanation for the seemingly ambiguous results obtained for the polymerizable surfactant was sought by examining the reactivity of its vinyl group in copolymerization with vinyl acetate and its allylic group in a chain transfer reaction. The results suggest that both the copolymerization and chain transfer reactions can lead to the observed reduction in polymerization rate with increasing TREM LF-40 concentration. © 1992 John Wiley & Sons, Inc.  相似文献   

6.
7.
A large body of data shows that the time dependence of conversion fits the equation P = At2 + Bt in the interval where, according to the Smith-Ewart model, the relationship should be linear. For latexes of very small particle size the Smith-Ewart linear relationship (P = Bt) is often observed, and for latexes of very large particle size the conversion was found to be proportional to t2. The experimental value of parameter B was in good agreement with independent theoretical predictions. From A and B the ratio between termination and propagation constants was calculated and was in the 5–200 range. Independent estimates of this ratio give the same order of magnitude. These independent estimates are from the literature and are obtained from the increase in conversion rate at catalyst post-addition during emulsion polymerization or from emulsion polymerization initiated by intermittent irradiation or from homogeneous polymerization in the presence of inert polymers of high viscosity. The conversion–time curves describing the whole conversion process generally have sigmoid shape. The molecular weight is often found to pass through a maximum as the conversion increases. In one experiment this maximum coincided with the calculated maximum in the average number of radicals per particle Q. The variation of experimental molecular weights with conversion accurately followed the theoretical predictions. The deviation from the Smith-Ewart model was often significant. The value of Q was not 0.5, as the Smith-Ewart model requires it to be, but often reached values much larger, as large as 10. The particle size distribution broadened with increasing conversion and became increasingly skew. Numerous data taken from the literature are in good quantitative or qualitative agreement with the theory proposed in Part III and for these data the observed deviations from the Smith-Ewart theory are readily explainable. The new data obtained with styrene, n-butyl methacrylate, and methyl methacrylate are also in quantitative agreement with the new theory. One experiment involving methyl methacrylate is analyzed in great detail. The variation of time, of Q, of molecular weight, of average particle size, and of particle size distribution with conversion are reported. The molecular weight distribution is also calculated from the conversion dependence of molecular weight.  相似文献   

8.
The emulsion polymerization of vinyl acetate was investigated at low ionic strengths and has quite unusual kinetics. The rate of polymerization is dependent on the initiator concentration to the first power and independent of soap concentration. In seeded polymerizations, the rate of polymerization depends on initiator to the 0.8 power, particle concentration to the 0.2 power, and monomer volume to 0.35 power. In all cases the rate of polymerization is almost independent of monomer concentration in the particles until 85–90% conversion. These results were rationalized by the following mechanism: (a) polymerization initiates in the aqueous phase because of the solubility of the monomer and is stabilized there by adsorption of ionic soap on the growing polymer molecule; (b) the growing polymer is swept up by a particle at a degree of polymerization (under our conditions) of about 50–200. Growth continues in the particle. This sweep-up is activation-controlled as both particle and polymer are charged. (c) Chain transfer to the acetyl group of monomer gives a new small radical which cyclizes to the water-soluble butyrolactonyl radical, and reinitiates polymerization in the aqueous phase; (d) the main termination step is reaction of an uncharged butyrolactonyl radical with a growing aqueous polymer radical. A secondary reaction at low ionic strength is sweep-up of an aqueous radical by a particle containing a radical. At high ionic strength, this is the major termination step. The unusual kinetic steps are justified by data from the literature. They are combined with the usual mechanisms operating for vinyl acetate polymerization and kinetic equations are derived and integrated. The integral equations were compared with the experimental data and shown to match it almost completely over the whole range of experimental variables.  相似文献   

9.
The mechanism of emulsion polymerization of acrylonitrile has been studied by measuring by dilatometry and electron microscopy the adsorption of monomer into polymer particles and polymerization characteristics such as rate, degree of polymerization, the growth of the particle during polymerization, and the degree of dispersion. In the emulsion polymerization of acrylonitrile, new particles are formed during polymerization at a rate which is proportional to the rate of polymerization and the ratio of unreacted monomer. The total amount of monomer adsorbed on or in the polymer particles is rather small, but the concentration on or in the polymer particles is sufficiently high and proportional to the monomer concentration in aqueous phase. The polymerization proceeds concurrently on or in the polymer particles and in aqueous phase, but the three loci may be continuous rather than discrete. A reaction scheme is introduced here which shows the coexistence of polymerizations on or in the polymer particles and in the aqueous phase.  相似文献   

10.
Radiation-induced emulsion polymerization of ethylene with ammonium perfluoro-octanoate as an emulsifier was studied in order to elucidate the effect of the number of polymer particles. Owing to the stable structure of the emulsifier from a radical attack, no C? F bond was detected in the polyethylene as expected. The polyethylene produced was mostly gel containing a small amount of low molecular weight polyethylene. This may be attributable to chain transfer to the polyethylene. The effects of dose rate and of concentration of the emulsifier were determined without considering the chain-transfer reaction to the emulsifier. By considering the escape of the radical which is produced by chain transfer to the monomer from the polymer particle to the aqueous phase at the steady state, the following equation is derived: The experimental results could be explained by this equation, and the apparent rate constants were obtained.  相似文献   

11.
As the first phase in the study of the emulsion polymerization of acenaphthylene (AcN), the oligomerization kinetics of the in-aqueous-phase soluble portion of the AcN monomer was investigated. The reactions were carried out in the absence and presence of anionic emulsifiers. The monomer disappearance rate was followed by ultraviolet (UV) spectroscopy and spectra were established for these species. It was found that aqueous phase AcN oligomerized with K2S2O8 initiator at 50°C to yield SOK+ -ended oligo -AcN species which showed a UV hypsochromic shift in polar solvents. The oligomerization had a second-order dependence on monomer concentration. The presence of sodium oleate (SO) and sodium dodecyl sulfate (SDS) emulsifiers at below and above their critical micelle concentrations decreased the rate constant of the aqueous phase oligomerization. These observations led to the suggestion of a mixed micellization concept in the particle nucleation mechanism.  相似文献   

12.
Interpolymers of tetrafluoroethylene and isobutylene containing approximately equimolar amounts of each monomer have been prepared by emulsion polymerization. Also prepared were compositions containing small amounts of other monomers such as acrylic acid. The characterization of these products is discussed, as is the preparation of both “ionomer” and iminated derivatives of the carboxylated terpolymers.  相似文献   

13.
This paper is the first in a series intended to clarify the particle nucleation mechanisms in emulsion polymerization. The theory for particle nucleation by precipitation of oligomeric radicals from the water phase is discussed and a model based on the diffusion, propagation and termination steps is presented. The physical factors that influence the capture rate of oligomers in particles are discussed, and qualitative expressions for the electrostatic repulsion and reversible diffusion are derived. These factors are shown to be able to explain the relatively slow absorption rate of oligomers in particles and micelles. A kinetic model for simultaneous particle nucleation and limited flocculation is presented. Numerical integration of this model shows that the particle number goes through a maximum and that simultaneous nucleation and flocculation of primary particles may take place after Interval I in an emulsion polymerization is finished.  相似文献   

14.
The emulsion polymerization of styrene initiated by potassium persulfate catalyzed by Ag(I) and/or ferrous ions Fe (II) was studied. It was found that silver ions in conjunction with potassium persulfate accelerate the polymerization of styrene. Ferrous ions reduce the polymerization rate by termination reaction with primary radicals. Both silver ions and ferrous ions act as transfer agents with the result of lowering of the average molecular weight of the polymer.  相似文献   

15.
The polymerization of vinyl stearate in aqueous emulsions with a non-ionic emulsifying agent and potassium peroxydisulfate as initiator has been investigated by use of a dilatometric method to follow the reaction. In general, the reaction kinetics do not follow the pattern established for styrene. Variation of initiator concentration produced latices containing approximately equal numbers of latex particles, even though the rate of reaction was almost directly proportional to the peroxydisulfate concentration. For a given initiator and monomer concentration polymerization occurs very slowly when the monomer is completely solubilized but as the number of micelles is reduced and the number of emulsion droplets increased, the rate increases to an optimum value, whereafter it decreases. A mechanism is proposed by which the sparsely soluble vinyl stearate reacts and redistributes itself into latex particles of a different size range from the micelles and emulsion droplets originally present.  相似文献   

16.
Emulsion polymerization of vinyl acetate with sodium laryl sulfate as emulsifier and potassium persulfate as initiator was studied and found to follow the rate equation suggested by Harriot:   相似文献   

17.
Emulsion polymerization is the most important industrial polymerization process for manufacturing water based polymers. The heterogeneous nature of the process requires the diffusion of monomers from the emulsified droplets, through the aqueous medium, into the polymer particles where the polymerization takes place. Adequate solubility of the monomer is necessary for the diffusion process to occur effectively. Consequently, very hydrophobic monomers cannot be readily incorporated by emulsion polymerization. The use of a catalytic level of cyclodextrin allows the use of very hydrophobic monomers in emulsion polymerization.[1] The mechanism of the process is believed to involve a catalytic cycle in which cyclodextrin acts as a “Phase Transport Catalyst”, continuously complexing and solubilizing the hydrophobic monomers and releasing them to the polymer particles. The kinetics and thermodynamics are favorable for the reaction to proceed.  相似文献   

18.
Emulsion polymerization of vinyl benzoate and its copolymerization with vinyl acetate or styrene are described. The effect of the potassium persulfate initiator, and the sodium lauryl sulfate emulsifier concentration on the rate of vinyl benzote homopolymerization and the molecular weight of the polymers was determined. In copolymerization with vinyl benzoate, both comonomers, vinyl acetate and styrene, decrease the initial polymerization rate. With increasing amounts of styrene in the comonomer mixture the polymerization rate increases but with vinyl acetate an opposite effect is observed. Reactivity ratios of copolymerizations were determined. For the vinyl benzoate [M1]-styrene [M2] comonomer system a r1 = 0.03 and a r2 = 29.58 and for vinyl benzoate [M1]-vinyl acetate [M2], a r1 = 1.93 and a r2 = 0.20 was obtained. From the vinyl benzoate-styrene reactivity ratios the Qe parameters were calculated.  相似文献   

19.
Nonpolymerizing latex particles surrounded by an aqueous phase saturated with monomer absorb only a finite amount of monomer, even if the monomer is a good solvent for the polymer, because the surface energy of each particle increases on swelling. At equilibrium the change in surface energy and the free energy of mixing exactly balance. Equations based on this thermodynamic principle predict with good accuracy the saturation swelling of crosslinked and uncrosslinked latex particles and the partitioning of monomer between the aqueous phase and latex particles at partial saturation. The available experimental data on swelling of latex polymers with monomers are reviewed. Earlier papers assumed that during emulsion polymerization the monomer concentration in the latex particles is independent of conversion as long as monomer droplets are present. This assumption is shown to be a justifiable approximation. The thermodynamics of the swelling of latex particles with a blend of two monomers is presented. The calculations indicate that copolymerization in emulsion should define reactivity ratios differing from those of homogeneous copolymerization by not more than 40% if the solubility of the comonomers in water is low. The reactivity ratio scheme is strictly applicable to emulsion copolymerization if the solvent properties of the two comonomers are identical.  相似文献   

20.
Values calculated for the activation volume for chain propagation, ΔV, for the polymerization of styrene in emulsions under a variety of conditions agree closely with that previously obtained in pure styrene (ΔV = ?18.6 cm3 mol?1). The rate of initiation of emulsion polymerization by radicals produced in the water phase was independent of pressure; therefore ΔV is zero. This differs from initiation in pure styrene which is slightly retarded by pressure (ΔV = 2.0 cm3 mol?1). The activation energy for the reaction in emulsion, as in pure monomer, decreases slightly with pressure. Chain transfer to monomer occurs to a much greater extent in emulsions than in pure monomer under similar temperature and pressure conditions. Values for the dependence of the polymerization rate on the initiator (i.e., the irradiation dose rate) and emulsifier concentration are consistent with Smith–Ewart, Case II kinetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号