首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The design and characterization of a hydrophobic cavity in de novo designed proteins provides a wide range of information about the functions of de novo proteins. We designed a de novo tetrameric coiled‐coil protein with a hydrophobic pocketlike cavity. Tetrameric coiled coils with hydrophobic cavities have previously been reported. By replacing one Leu residue at the a position with Ala, hydrophobic cavities that did not flatten out due to loose peptide chains were reliably created. To perform a detailed examination of the ligand‐binding characteristics of the cavities, we originally designed two other coiled‐coil proteins: AM2, with eight Ala substitutions at the adjacent a and d positions at the center of a bundled structure, and AM2W, with one Trp and seven Ala substitutions at the same positions. To increase the association of the helical peptides, each helical peptide was connected with flexible linkers, which resulted in a single peptide chain. These proteins exhibited CD spectra corresponding to superhelical structures, despite weakened hydrophobic packing. AM2W exhibited binding affinity for size‐complementary organic compounds. The dissociation constants, Kd, of AM2W were 220 nM for adamantane, 81 μM for 1‐adamantanol, and 294 μM for 1‐adamantaneacetic acid, as measured by fluorescence titration analyses. Although it was contrary to expectations, AM2 did not exhibit any binding affinity, probably due to structural defects around the designed hydrophobic cavity. Interestingly, AM2W exhibited incremental structure stability through ligand binding. Plugging of structural defects with organic ligands would be expected to facilitate protein folding.  相似文献   

2.
A new NMR experiment is presented for the measurement of micros-ms time scale dynamics of Asn and Gln side chains in proteins. Exchange contributions to the (15)N line widths of side chain residues are determined via a relaxation dispersion experiment in which the effective nitrogen transverse relaxation rate is measured as a function of the number of refocusing pulses in constant-time, variable spacing CPMG intervals. The evolution of magnetization from scalar couplings and dipole-dipole cross-correlations, which has limited studies of exchange in multi-spin systems in the past, does not affect the extraction of accurate exchange parameters from relaxation profiles of NH(2) groups obtained in the present experiment. The utility of the method is demonstrated with an application to a Leu --> Ala cavity mutant of T4 lysozyme, L99A. It is shown that many of the side chain amide groups of Asn and Gln residues in the C-terminal domain of the protein are affected by a chemical exchange process which may be important in facilitating the rapid binding of hydrophobic ligands to the cavity.  相似文献   

3.
We report here an advanced approach for the characterization of the folding pattern of a de novo designed antiparallel coiled coil peptide by high-resolution methods. Incorporation of two fluorescence labels at the C- and N-terminus of the peptide chain as well as modification of two hydrophobic core positions by Phe/[15N,13C]Leu enable the study of the folding characteristics and of distinct amino acid side chain interactions by fluorescence resonance energy transfer (FRET) and NMR spectroscopy. Results of both experiments reveal the antiparallel alignment of the helices and thus prove the design concept. This finding is also supported by molecular dynamics simulations. Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS) in combination with NMR experiments was used for verification of the oligomerization equilibria of the coiled coil peptide.  相似文献   

4.
Systematic model investigations of the molecular interactions of fluorinated amino acids within native protein environments substantially improve our understanding of the unique properties of these building blocks. A rationally designed heterodimeric coiled coil peptide (VPE/VPK) and nine variants containing amino acids with variable fluorine content in either position a16 or d19 within the hydrophobic core were synthesized and used to evaluate the impact of fluorinated amino acid substitutions within different hydrophobic protein microenvironments. The structural and thermodynamic stability of the dimers were examined by applying both experimental (CD spectroscopy, FRET, and analytical ultracentrifugation) and theoretical (MD simulations and MM‐PBSA free energy calculations) methods. The coiled coil environment imposes position‐dependent conformations onto the fluorinated side chains and thus affects their packing and relative orientation towards their native interaction partners. We find evidence that such packing effects exert a significant influence on the contribution of fluorine‐induced polarity to coiled coil folding.  相似文献   

5.
6.
The reaction of a mixture of 1 equiv of PhPH(2) and 2 equiv of PhNHSiMe(2)CH(2)Cl with 4 equiv of Bu(n)Li followed by the addition of THF generates the lithiated ligand precursor [NPN]Li(2).(THF)(2) (where [NPN] = PhP(CH(2)SiMe(2)NPh)(2)). The reaction of [NPN]Li(2).(THF)(2) with TaMe(3)Cl(2) produces [NPN]TaMe(3), which reacts under H(2) to yield the diamagnetic dinuclear Ta(IV) tetrahydride ([NPN]Ta)(2)(mu-H)(4). This hydride reacts with N(2) with the loss of H(2) to produce ([NPN]Ta(mu-H))(2)(mu-eta(1):eta(2)-N(2)), which was characterized both in solution and in the solid state, and contains strongly activated N(2) bound in the unprecedented side-on end-on dinuclear bonding mode. A density functional theory calculation on the model complex [(H(3)P)(H(2)N)(2)Ta(mu-H)](2)(mu-eta(1):eta(2)-N(2)) provides insight into the molecular orbital interactions involved in the side-on end-on bonding mode of dinitrogen. The reaction of ([NPN]Ta(mu-H))(2)(mu-eta(1):eta(2)-N(2)) with propene generates the end-on bound dinitrogen complex ([NPN]Ta(CH(2)CH(2)CH(3)))(2)(mu-eta(1):eta(1)-N(2)), and the reaction of [NPN]Li(2).(THF)(2) with NbCl(3)(DME) generates the end-on bound dinitrogen complex ([NPN]NbCl)(2)(mu-eta(1):eta(1)-N(2)). These two end-on bound dinitrogen complexes provide evidence that the bridging hydride ligands are responsible for the unusual bonding mode of dinitrogen in ([NPN]Ta(mu-H))(2)(mu-eta(1):eta(2)-N(2)). The dinitrogen moiety in the side-on end-on mode is amenable to functionalization; the reaction of ([NPN]Ta(mu-H))(2)(mu-eta(1):eta(2)-N(2)) with PhCH(2)Br results in C-N bond formation to yield [NPN]Ta(mu-eta(1):eta(2)-N(2)CH(2)Ph)(mu-H)(2)TaBr[NPN]. Nitrogen-15 NMR spectral data are provided for all the tantalum-dinitrogen complexes and derivatives described.  相似文献   

7.
The active sites of metalloenzymes are often deeply buried inside a hydrophobic protein sheath, which protects them from undesirable hydrolysis and polymerization reactions, allowing them to achieve their normal functions. In order to mimic the hydrophobic environment of the active sites in bacterial monooxygenases, diiron(II) compounds of the general formula [Fe2([G-3]COO)4(4-RPy)2] were prepared, where [G-3]COO- is a third-generation dendrimer-appended terphenyl carboxylate ligand and 4-RPy is a pyridine derivative. The dendrimer environment provides excellent protection for the diiron center, reducing its reactivity toward dioxygen by about 300-fold compared with analogous complexes of terphenyl carboxylate ([G-1]COO-) ligands. An FeIIFeIII intermediate was characterized by electronic, electron paramagnetic resonance, M?ssbauer, and X-ray absorption spectroscopic analyses following the oxygenation of [Fe2([G-3]COO)4(4-PPy)2], where 4-PPy is 4-pyrrolidinopyridine. The results are consistent with the formation of a superoxo species. This diiron compound, in the presence of dioxygen, can oxidize external substrates.  相似文献   

8.
A relaxation dispersion-based NMR experiment is presented for the measurement and quantitation of micros-ms dynamic processes at methyl side-chain positions in proteins. The experiment measures the exchange contribution to the 13C line widths of methyl groups using a constant-time CPMG scheme. The effects of cross-correlated spin relaxation between dipole-dipole and dipole-CSA interactions as well as the effects of scalar coupling responsible for mixing of magnetization modes during the course of the experiment have been investigated in detail both theoretically and through simulations. It is shown that the complex relaxation properties of the methyl spin system do not complicate extraction of accurate exchange parameters as long as care is taken to ensure that appropriate magnetization modes are interchanged in the middle of the constant-time CPMG period. An application involving the measurement of relaxation dispersion profiles of methionine residues in a Leu99Ala substitution of T4 lysozyme is presented. All of the methionine residues are sensitive to an exchange event with a rate on the order of 1200 s(-1) at 20 degrees C that may be linked to a process in which hydrophobic ligands are able to rapidly bind to the cavity that is present in this mutant.  相似文献   

9.
The kinetics and mechanism of the self-assemblies of alpha- and beta-cyclodextrin (CD) [2]rotaxanes, [(NC)5Fe-[pyRpy.CD]Fe(CN)5]6-, containing pentacyanoferrate(II)-stoppered 4,4'-bis(pyridyl) threads pyRpy (R = -CH = CH-, -N=N-, -CH=N-N=CH-, and -C(CH3)=N-N=C(CH3)-) have been investigated in aqueous solution by using visible and 1H NMR spectroscopy. The rotaxanes may be formed rapidly by the addition of the [Fe(CN)5OH2]3- ion to the CD-included pyRpy thread or slowly by the addition of an excess of CD to the dimeric [(NC)5Fe(pyRpy)Fe(CN)5]6- complex. In the latter method, the mechanism involves a rate-determining dissociation of a [Fe(CN)5]3- center to form the monomeric complex, which subsequently includes the coordinated pyRpy in the CD cavity to yield the semirotaxane, which is rapidly recomplexed by the [Fe(CN)5OH2]3- ion, generating the [2]rotaxane. Rate and activation parameters and CD inclusion stability constants have been determined for the ligand substitution reactions involving the formations and dissociations of the semirotaxanes and rotaxanes. The extents of the decreases in the formation (kf) and dissociation (kd) rate constants upon CD inclusions of the free and coordinated ligands, respectively, are related to the natures of the CD hosts and the R linkage on the pyRpy guests. The semirotaxanes and rotaxanes exhibit significant bathochromic shifts in their visible MLCT transitions compared with the corresponding monomeric and dimeric iron complexes. A correlation between the extent of the decrease in kd and the change in the MLCT energy upon alpha-CD inclusions of [Fe(CN)5L]3-, where L is an aromatic N-heterocyclic 4-Rpy or pyRpy ligand, has been observed.  相似文献   

10.
New mixed-valence iron-nickel dithiolates are described that exhibit structures similar to those of mixed-valence diiron dithiolates. The interaction of tricarbonyl salt [(dppe)Ni(pdt)Fe(CO)(3)]BF(4) ([1]BF(4), where dppe = Ph(2)PCH(2)CH(2)PPh(2) and pdt(2-) = -SCH(2)CH(2)CH(2)S-) with P-donor ligands (L) afforded the substituted derivatives [(dppe)Ni(pdt)Fe(CO)(2)L]BF(4) incorporating L = PHCy(2) ([1a]BF(4)), PPh(NEt(2))(2) ([1b]BF(4)), P(NMe(2))(3) ([1c]BF(4)), P(i-Pr)(3) ([1d]BF(4)), and PCy(3) ([1e]BF(4)). The related precursor [(dcpe)Ni(pdt)Fe(CO)(3)]BF(4) ([2]BF(4), where dcpe = Cy(2)PCH(2)CH(2)PCy(2)) gave the more electron-rich family of compounds [(dcpe)Ni(pdt)Fe(CO)(2)L]BF(4) for L = PPh(2)(2-pyridyl) ([2a]BF(4)), PPh(3) ([2b]BF(4)), and PCy(3) ([2c]BF(4)). For bulky and strongly basic monophosphorus ligands, the salts feature distorted coordination geometries at iron: crystallographic analyses of [1e]BF(4) and [2c]BF(4) showed that they adopt "rotated" Fe(I) centers, in which PCy(3) occupies a basal site and one CO ligand partially bridges the Ni and Fe centers. Like the undistorted mixed-valence derivatives, members of the new class of complexes are described as Ni(II)Fe(I) (S = (1)/(2)) systems according to electron paramagnetic resonance spectroscopy, although with attenuated (31)P hyperfine interactions. Density functional theory calculations using the BP86, B3LYP, and PBE0 exchange-correlation functionals agree with the structural and spectroscopic data, suggesting that the spin for [1e](+) is mostly localized in a Fe(I)-centered d(z(2)) orbital, orthogonal to the Fe-P bond. The PCy(3) complexes, rare examples of species featuring "rotated" Fe centers, both structurally and spectroscopically incorporate features from homobimetallic mixed-valence diiron dithiolates. Also, when the NiS(2)Fe core of the [NiFe]-hydrogenase active site is reproduced, the "hybrid models" incorporate key features of the two major classes of hydrogenase. Furthermore, cyclic voltammetry experiments suggest that the highly basic phosphine ligands enable a second oxidation corresponding to the couple [(dxpe)Ni(pdt)Fe(CO)(2)L](+/2+). The resulting unsaturated 32e(-) dications represent the closest approach to modeling the highly electrophilic Ni-SI(a) state. In the case of L = PPh(2) (2-pyridyl), chelation of this ligand accompanies the second oxidation.  相似文献   

11.
A number of mono(imidazole)-ligated complexes of perchloro(meso-tetramesitylporphyrinato)iron(III), [Fe(TMP)L]ClO(4), have been prepared, and their spin states have been examined by (1)H NMR, (13)C NMR, and EPR spectroscopy as well as solution magnetic moments. All the complexes examined have shown a quantum mechanical spin admixed state of high and intermediate-spin (S = 5/2 and 3/2) states though the contribution of the S = 3/2 state varies depending on the nature of axial ligands. While the complex with extremely bulky 2-tert-butylimidazole (2-(t)()BuIm) has exhibited an essentially pure S = 5/2 state, the complex with electron-deficient 4,5-dichloroimidazole (4,5-Cl(2)Im) adopts an S = 3/2 state with 30% of the S = 5/2 spin admixture. On the basis of the (1)H and (13)C NMR results, we have concluded that the S = 3/2 contribution at ambient temperature increases according to the following order: 2-(t)BuIm < 2-(1-EtPr)Im < 2-MeIm 相似文献   

12.
De novo design of alpha-helical peptides that self-assemble to form helical coiled coils is a powerful tool for studying molecular recognition between peptides/proteins and determining the fundamental forces involved in their folding and structure. These amphipathic helices assemble in aqueous solution to generate the final coiled coil motif, with the hydrophobic residues in the interior and the polar/hydrophilic groups on the exterior. Considerable effort has been devoted to investigate the forces that determine the overall stability and final three-dimensional structure of the coiled coils. One of the major challenges in coiled coil design is the achievement of specificity in terms of the oligomeric state, with respect to number (two, three, four, or higher), nature (homomers vs heteromers), and strand orientation (parallel vs antiparallel). As seen in nature, metal ions play an important role in this self-organization process, and the overall structure of metalloproteins is primarily the result of two driving forces: the metal coordination preference and the fold of the polypeptide backbone. Previous work in our group has shown that metal ions such as As(III) and Hg(II) can be used to enforce different aggregation states in the Cys derivatives of the designed homotrimeric coiled-coil TRI family [Ac-G(LKALEEK)4G-CONH2]. We are now interested in studying the interplay between the metal ion and peptide preferences in controlling the specificity and relative orientation of the alpha-helices in coiled coils. For this objective, two derivatives of the TRI family, TRi L2WL9C and TRi L2WL23C, have been synthesized. Along with those two peptides, two derivatives of Coil-Ser, CSL9C and CSL19C (CS = Ac-EWEALEKKLAALESKLQALEKKLEALEHG-CONH2), a similar de novo designed three-stranded coiled coil that has the potential to form antiparallel coiled coils, have also been used. Circular dichroism, UV-vis, and 199Hg and 113Cd NMR spectroscopy results reveal that the addition of Hg(II) and Cd(II) to the different mixtures of these peptides forms preferentially homotrimeric coiled coils, over a statistical population of heterotrimeric parallel and antiparallel coiled coils.  相似文献   

13.
We used high-resolution proton-detected multidimensional NMR to study the solvent-exposed parts of a seven-helical integral membrane proton pump, proteorhodopsin (PR). PR samples were prepared by growing the apoprotein on fully deuterated medium and reintroducing protons to solvent-accessible sites through exchange with protonated buffer. This preparation leads to NMR spectra with proton resolution down to ca. 0.2 ppm at fast spinning (28 kHz) in a protein back-exchanged at a level of 40%. Novel three-dimensional proton-detected chemical shift correlation spectroscopy allowed for the identification and resonance assignment of the solvent-exposed parts of the protein. Most of the observed residues are located at the membrane interface, but there are notable exceptions, particularly in helix G, where most of the residues are susceptible to H/D exchange. This helix contains Schiff base-forming Lys231, and many conserved polar residues in the extracellular half, such as Asn220, Tyr223, Asn224, Asp227, and Asn230. We proposed earlier that high mobility of the F-G loop may transiently expose a hydrophilic cavity in the extracellular half of the protein, similar to the one found in xanthorhodopsin. Solvent accessibility of helix G is in line with this hypothesis, implying that such a cavity may be a part of the proton-conducting pathway lined by this helix.  相似文献   

14.
Metallosupramolecular tetrahedra M8[L4Ti4] are easily obtained by self-assembly from the triangular ligands L-H6 and titanoyl bis(acetylacetonate) in the presence of alkali metal carbonates as base. All the complexes can be well characterized by 1H NMR in combination with ESI FT-ICR MS. Force field calculations reveal that the tetrahedra show Ti-Ti separations of 17 angstroms ([L1(4)Ti4]8-) and 23.5 angstroms ([L2(4)Ti4]8-), respectively, leading to huge internal cavities. The cavity is readily shielded in the case of L1 but possesses big pores with the bigger ligand L2. [L1(4)Ti4]8- was used to investigate the host-guest chemistry of these container molecules and it was found that cationic organic guest species like anilinium can be introduced in the interior of the complex. Inclusion is nicely followed by NMR spectroscopy. Upon addition of one equivalent of guest the symmetry of the tetrahedron is lost but is regained after addition of significantly more than four equivalents.  相似文献   

15.
Current theoretical and experimental evidence points toward X = N as the identity of the interstitial atom in the [MoFe7S9X] core of the iron-molybdenum cofactor cluster of nitrogenase. This atom functions with mu6 bridging multiplicity to six iron atoms and, if it is nitrogen as nitride, raises a question as to the existence of a family of molecular iron nitrides of higher nuclearity than known dinuclear Fe(III,IV) species with linear [Fe-N-Fe]5+,4+ bridges. This matter has been initially examined by variation of reactant stoichiometry in the self-assembly systems [FeX4]1-/(Me3Sn)3N (X = Cl-, Br-) in acetonitrile. A 2:1 mol ratio affords [Fe4N2Cl10]4- (1), isolated as the Et4N+ salt (72%). This cluster has idealized C2h symmetry with a planar antiferromagnetically coupled [Fe(III)4(mu3-N)2]6+ core containing an Fe2N2 rhombus to which are attached two FeCl3 units. DFT calculations have been performed to determine the dominant magnetic exchange pathway. An 11:8 mol ratio leads to [Fe10N8Cl12]5- (3) as the Et4N+ salt (37%). The cluster possesses idealized D2h symmetry and is built of 15 edge- and vertex-shared rhomboids involving two mu3-N and six mu4-N bridging atoms, and incorporates two of the core units of 1. Four FeN2Cl2 and four FeN3Cl sites are tetrahedral and two FeN5 sites are trigonal pyramidal. The cluster is mixed-valence (9Fe(III) + Fe(IV)); a discrete Fe(IV) site was not detected by crystallography or M?ssbauer spectroscopy. The corresponding clusters [Fe4N2Br10]4- and [Fe10N8Br12]5- are isostructural with 1 and 3, respectively. Future research is directed toward defining the scope of the family of molecular iron nitrides.  相似文献   

16.
The coiled coil trimer structure is a common motif observed in membrane fusion processes of specific fusion proteins such as the hemagglutinin glycoprotein. The HA2 subunit in the hemagglutinin changes its conformation or geometry to be favorable to membrane fusion in response to endosomal weakly acidic pH. This pH responsiveness is indispensable to an artificial polypeptide-triggered delivery system as well as the membrane fusion reaction in biology. In this study, we have constructed an AAB-type coiled coil heteroassembled system that is sensitive to weakly acidic pH. The heterotrimer is formed from two kinds of polypeptides containing an Ala or a Trp residue at a hydrophobic a position, and it was observed that the Glu residue at the other a position induced an acidic pH-dependent conformational change. On the basis of this pH-responsive coiled coil heteroassembled system, a boronic acid coupled working polypeptide for the combination of an intervesicular complex with a sugarlike compound on the surface of the target liposome, and a supporting polypeptide for the construction of a pH-responsive heterotrimer with the working polypeptide were designed and synthesized. The process of membrane fusion was characterized by lipid-mixing, inner-leaflet lipid-mixing, and content-mixing assays. The target selective vesicle fusion is clearly observed at a weakly acidic pH, where the working polypeptides form a heterotrimeric coiled coil with the supporting polypeptides in a 1:2 binding stoichiometry and the surfaces between pilot and target vesicles come into close proximity to each other.  相似文献   

17.
Adsorption studies by optical reflectometry show that complex coacervate core micelles (C3Ms) composed of poly([4-(2-amino-ethylthio)-butylene] hydrochloride)(49)-block-poly(ethylene oxide)(212) and poly([4-(2-carboxy-ethylthio)-butylene] sodium salt)(47)-block-poly(ethylene oxide)(212) adsorb in equal amounts to both silica and cross-linked 1,2-polybutadiene (PB). The C3Ms have an almost glass-like core and atomic force microscopy of a dried layer of adsorbed C3Ms shows densely packed flattened spheres on silica, which very probably are adsorbed C3Ms. Experiments were performed with different types of surfaces, solvents, and proteins; bare silica and cross-linked 1,2-PB, NaNO(3) and phosphate buffer, and lysozyme, bovine serum albumin, beta-lactoglobulin, and fibrinogen. On the hydrophilic surface the coating reduces protein adsorption >90% in 0.1 M phosphate buffer, whereas the reduction on the coated hydrophobic surface is much lower. Reduction is better in phosphate buffer than in NaNO(3), except for the positively charged lysozyme, where the effect is reversed.  相似文献   

18.
The host-guest properties of calix[6]tren 1 have been evaluated. The receptor is based on a calix[6]arene that is covalently capped at the narrow rim by a tren unit. As a result, the system presents a concave hydrophobic cavity with, at its bottom, a grid-like nitrogenous core. Despite its well-defined cavity and opening to the outside at the large rim, 1 did not behave as a good receptor for neutral molecules in chloroform. However, it exhibited efficient endo-complexation of ammonium guests. By contrast, the per-protonated host, 1.4H(+), behaved as a remarkable receptor for small organic molecules. The complexation is driven by a strong charge-dipole interaction and hydrogen bonds between the polar guest and the tetracationic cap of the calixarene. Finally, coordination of Zn(2+) to the tren core led to the asymmetrization of calixarene cavity and to the strong but selective endo-binding of neutral ligands. This study emphasizes the efficiency of a receptor presenting a concave hydrophobic cavity that is polarized at its bottom. The resulting combination of charge-dipole, hydrogen bonding, CH-pi, and van der Waals interactions highly stabilizes the supramolecular architectures. Also, importantly, the tren cap allows the tuning of the polarization, offering either a basic (1), a highly charged and acidic (1.4H(+)), or a coordination (1.Zn(2+)) site. As a result, the system proved to be highly versatile, tunable, and interconvertible in solution by simple addition of protons, bases, or metal ions.  相似文献   

19.
The synthesis of a series of RuII complexes incorporating thiacrown ligands ([12]ane-S4, [14]ane-S4, [16]ane-S4), as well as 2,2'-bipyridine (bpy) or pyridine, is reported. Structural studies on these complexes have been carried out using a variety of techniques. Detailed 1H NMR spectroscopic studies on the previously reported [Ru([12]ane-S4)(bpy)]2+ (1) reveal that-contrary to earlier reports-the observed fluxional 1H NMR behavior is not due to chemical exchange involving cleavage of the bpy Ru--N bond but is, in fact, due to lone-pair inversion of coordinated macrocyclic sulfur donor atoms. This phenomenon is also observed for the [14]ane-S4 and [16]ane-S4 analogues of 1. For the first time, using a combination of X-ray crystallography, more detailed 1H NMR experiments, and computational methods, an in-depth study on the energetics and dynamics of invertomer formation and conversion for macrocyclic coordination complexes has been carried out. These studies reveal that the steric constraints of assembling each sulfur macrocycle and bpy ligand around the octahedral Ru(II) center lead to close intramolecular contacts. These contacts are largely dependent on the orientation of the electron lone pairs of equatorial sulfur donor atoms and correlate with the comparative stability of the different invertomeric forms. Thus, the conformational preferences of the three macrocyles in [Ru([n]ane-S4)(bpy)]2+ complexes are determined by steric rather than electronic effects.  相似文献   

20.
The condensation of 5-chlorocarbonyl-2,2'-bipyridine with a variety of rigid aromatic diamines, L, gave a series of new bisamido-2,2'-bipyridine based ligands (L = 4,4'-methylenediamine, L1; L = 1,1-bis(4-aminophenyl)cyclohexane, L2; L = 1,1-bis(4-amino-3,5-dimethylphenyl)cyclohexane, L3) capable of forming dinuclear triple helicate complexes on coordination to Fe(II). The reaction of various Fe(II) salts with gave: {[Fe2(L1)3](BF4)4, 1; [Fe2(L1)3](ClO4)4, 2; [Fe2(L1)3]Cl4, 3; [Fe2(L1)3](SO4)2, 4; [Fe2(L2)3](BF4)4, 5; [Fe2(L2)3]Cl4, 6; [Fe2(L3)3](BF4)4; 7; [Fe2(L3)3]Cl4, 8; and [Fe2(L3)3](SO4)2, 9, as determined by UV-Vis, IR and 1H NMR spectroscopy, electrospray mass spectrometry (ESMS) and elemental analyses. A UV-Vis complexometric titration experiment between L3 and Fe(BF4)2 established conclusively a [Fe2(L3)3]4+ product species. 1H NMR spectroscopy showed that the complexes exist as both rac-(helical) and meso-(non-helical) isomers in DMSO-d6 solution at 298 K. L1-L3 were designed such that following complexation, six amide hydrogen atoms would line an inter-strand intrahelical cavity of sufficient size to facilitate the binding of guest species within it. Indeed, ESMS studies showed characteristic peaks typical of complex-anion species in solution. Furthermore, 1H NMR titration experiments showed that anions bind within the intrahelical cavity as titration of 1, 5 and 7 with Bu4NCl showed significant downfield shifts in the amide and bipyridyl H6 proton resonances to yield a species of 1 : 2 host to guest stoichiometry. Moreover, addition of Bu4NCl to 1, 5 and 7 shifted the rac-/meso-species distribution from 1 : 2 in favour of the meso- to 100% in favour of the rac-isomer, showing that Cl- ions favour the formation of the triple helicate species in DMSO-d6 solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号