首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The extraction behavior of U(VI) and Pu(IV) with dioctyloctanamide (DOOA), dioctylethylhexanamide (DOEHA) and diisobutylethylhexanamide (DIBEHA) was investigated from nitric acid medium. With DOOA, U(VI) extraction is higher than that for Pu(IV) upto 5M HNO3 and the trend is reversed at higher acid concentrations. Extraction yield of U(VI) is higher than that for Pu(IV) in the case of DOEHA and DIBEHA. DIBEHA extraction of Pu(IV) is found to be very small. The lower value of the distribution ratio for Pu(IV) with branched amides was attributed to steric reasons. The possibility of using these amides for separation of U(VI) and Pu(IV) without valency adjustment was explored. Both U(VI) and Pu(IV) are extracted as their disolvates by DOOA and DOEHA.  相似文献   

2.
The heterobimetallic actinide compound UO(2)Ce(H(2)O)[C(6)H(4)(PO(3)H)(2)](2)·H(2)O was prepared via the hydrothermal reaction of U(VI) and Ce(IV) in the presence of 1,2-phenylenediphosphonic acid. We demonstrate that this is a kinetic product that is not stable with respect to decomposition to the monometallic compounds. Similar reactions have been explored with U(VI) and Ce(III), resulting in the oxidation of Ce(III) to Ce(IV) and the formation of the Ce(IV) phosphonate, Ce[C(6)H(4)(PO(3)H)(PO(3)H(2))][C(6)H(4)(PO(3)H)(PO(3))]·2H(2)O, UO(2)Ce(H(2)O)[C(6)H(4)(PO(3)H)(2)](2)·H(2)O, and UO(2)[C(6)H(4)(PO(3)H)(2)](H(2)O)·H(2)O. In comparison, the reaction of U(VI) with Np(VI) only yields Np[C(6)H(4)(PO(3)H)(2)](2)·2H(2)O and aqueous U(VI), whereas the reaction of U(VI) with Pu(VI) yields the disordered U(VI)/Pu(VI) compound, (U(0.9)Pu(0.1))O(2)[C(6)H(4)(PO(3)H)(2)](H(2)O)·H(2)O, and the Pu(IV) phosphonate, Pu[C(6)H(4)(PO(3)H)(PO(3)H(2))][C(6)H(4)(PO(3)H)(PO(3))]·2H(2)O. The reactions of Ce(IV) with Np(VI) yield disordered heterobimetallic phosphonates with both M[C(6)H(4)(PO(3)H)(PO(3)H(2))][C(6)H(4)(PO(3)H)(PO(3))]·2H(2)O (M = Ce, Np) and M[C(6)H(4)(PO(3)H)(2)](2)·2H(2)O (M = Ce, Np) structures, as well as the Ce(IV) phosphonate Ce[C(6)H(4)(PO(3)H)(PO(3)H(2))][C(6)H(4)(PO(3)H)(PO(3))]·2H(2)O. Ce(IV) reacts with Pu(IV) to yield the Pu(VI) compound, PuO(2)[C(6)H(4)(PO(3)H)(2)](H(2)O)·3H(2)O, and a disordered heterobimetallic Pu(IV)/Ce(IV) compound with the M[C(6)H(4)(PO(3)H)(PO(3)H(2))][C(6)H(4)(PO(3)H)(PO(3))]·2H(2)O (M = Ce, Pu) structure. Mixtures of Np(VI) and Pu(VI) yield disordered heterobimetallic Np(IV)/Pu(IV) phosphonates with both the An[C(6)H(4)(PO(3)H)(PO(3)H(2))][C(6)H(4)(PO(3)H)(PO(3))]·2H(2)O (M = Np, Pu) and An[C(6)H(4)(PO(3)H)(2)](2)·2H(2)O (M = Np, Pu) formulas.  相似文献   

3.
The reliable separation of neptunium from dissolved nuclear fuel assumes the ability to maintain a preferred oxidation state. However, regardless of its initial redox speciation, a series of reactions occurs in nitric acid to create a mixture of oxidation states including Np(V), Np(VI) and sometimes Np(IV). To further complicate the situation, irradiated solutions such as fuel dissolution contain both transient and long-lived radiolysis products which may be strongly oxidizing or reducing. Thus, irradiation may be expected to impact the equilibrium distributions of the various neptunium valences.We have irradiated nitric acid solutions of neptunium with 60Co gamma-rays, and measured radiolytically-induced changes in neptunium valences, as well as the nitrous acid concentration, by UV/Vis spectroscopy. It was found that in 4 M HNO3 at low absorbed doses, the oxidizing radicals oxidized Np(V) to Np(VI). However, as the irradiation proceeded the concentration of nitrous acid became sufficient to reduce Np(VI) to Np(V), and then continued irradiation favored this reduction until an equilibrium was achieved in balance with the oxidation of Np(V) by nitric acid itself. The starting abundances of the two neptunium valences did not affect the final equilibrium concentrations of Np(V) and Np(VI), and no Np(IV) was detected.  相似文献   

4.
The uptake behavior of U(VI), Pu(IV), Am(III) and a few long-lived fission products from nitric acid media by bis(2-ethylhexyl) sulfoxide (BESO) adsorbed on Chromosorb has been studied U(VI), Pu(IV) and Zr(IV) are taken up appreciably as compared to trivalent actinides/lanthanides including some coexisting fission product contaminants which are weakly sorbed on the column. Chromosorb could be loaded with (1.12±0.03) g of BESO per g of the support. Maximum sorption is observed around 4–5 mol·dm–3 HNO3 for both U(VI) and Pu(IV), which are sorbed as their disolvates. The elution of (U(VI) and Pu(IV) from the metal loaded sorbent has also been optimized. Desorption of U(VI) is easily accomplished with dilute nitric acid (ca. 0.01 mol·dm–3)while Pu(IV) is reductively stripped with 0.1 mol·dm–3 NH2OH·HCl. Effective sequential separation of U(VI), Pu(IV) and Am(III) from their several admixtures could be readily achieved from real medium and low level active acidic process raffinates.  相似文献   

5.
Studies have been performed on the liquid-liquid extraction of neptunium from nitric acid solutions by di-n-hexylsulphoxide (DHSO) di-no-octylsulphoxide (DOSO) and di-iso-amylsulphoxide (DISO) and their mixtures over a wide range of conditions. At a given strength of the extractant, extraction of Np(IV) increases initially rapidly with increase in the acid concentration; at high acidities, above 8M HNO3, the extraction decreases. Under otherwise identical conditions, extraction increases with an increase in the extractant concentration. The species extracted would appear to be Np(NO3)4·2(R2SO). A mixture of two extractants extracts more than the sum of the extractions due to the individual components at concentrations corresponding to those of the mixture. After loading the organic phase with uranium(VI), extractability of Np(IV) becomes considerably lower. The diminution in extraction with increase in temperature is small. A comparison of the extraction behaviour of Np(IV) with those of Pu(IV), U(VI) and some associated fission products has been made.  相似文献   

6.
U(VI), Np(VI), and Pu(VI) borates with the formula AnO(2)[B(8)O(11)(OH)(4)] (An = U, Np, Pu) have been prepared via the reactions of U(VI) nitrate, Np(VI) perchlorate, or Pu(IV) or Pu(VI) nitrate with molten boric acid. These compounds are all isotypic and consist of a linear actinyl(VI) cation, AnO(2)(2+), surrounded by BO(3) triangles and BO(4) tetrahedra to create an AnO(8) hexagonal bipyramidal environment. The actinyl bond lengths are consistent with actinide contraction across this series. The borate anions bridge between actinyl units to create sheets. Additional BO(3) triangles and BO(4) tetrahedra extend from the polyborate layers and connect these sheets together to form a three-dimensional chiral framework structure. UV-vis-NIR absorption and fluorescence spectroscopy confirms the hexavalent oxidation state in all three compounds. Bond-valence parameters are developed for Np(VI).  相似文献   

7.
The complex formation of U(VI), Np(VI) and Pu(VI) with chloride ions was studied in HClO4−HCl solutions at ionic strength of 2.0 and [H+]=2.0M by the method of extraction chromatography using dilute HDEHP as the stationary phase.  相似文献   

8.
Electrochemical reduction of U(VI) in nitric acid-hydrazine solution is greatly influenced by the concentration of nitric acid. In low acidity nitric acid solution such as 0.1M (M=mol/dm3) HNO3, U(VI) was firstly reduced to U(V) and then partially reduced to U(IV). In high acidity nitric acid solution, e.g., 3-6M HNO3, an electrode process of two-electron transfer was involved in the reduction of U(VI). A higher U(IV) yield could be achieved in nitric acid solution with higher concentration. Hydrazine was very effective in suppressing the reduction of concentrated nitric acid, and the optimal concentration of hydrazine added was 0.075 to 0.15M in 6M HNO3 This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
The effect of iron powder (Fe0) on the reduction of Pu(VI),Np(V), and U(VI) was investigated in dilute NaCl and synthetic brines. Thetotal concentrations and oxidation states of the actinides in these solutionswere monitored as functions of pC H +, Eh, and time using techniques includingVis/Near IR absorption spectrophotometry, solvent extraction, activity counting,and inductively coupled plasma spectroscopy-mass spectrometry (ICP-MS). Whenconcentrations were too low and the oxidation states could not be directlydetermined by spectrophotometry or solvent extraction, comparing the measuredconcentrations with the solubility of reference systems helped to define thefinal oxidation states. In general, the reduction was more rapid, and couldproceed further, in the dilute NaCl solution than in the brine solutions.The experimental observations can be summarized as follows: (1) in the diluteNaCl solutions (pC H + 7 to 12), all three actinides, Pu(VI), Np(V) and U(VI),were reduced to lower oxidation states (most likely the tetravalent state)within a few days to a few months in the presence of Fe0; (2) insynthetic brines containing Fe0 (pC H + 8 to 13), the reductionof Pu(VI) was much slower than in the dilute NaCl solution. The dominant oxidationstate of Pu in the brine solution was Pu(V), the concentration of which wascontrolled by the electrochemical potential and could probably be representedby a heterogeneous redox reaction PuO2 . xH2O(s) PuO2 + +e ; (3) in synthetic brines containing Fe0 (pC H + 8 to 13), Np(V) was probably reduced to Np(IV) and precipitatedfrom the solution; (4) in synthetic brines containing Fe0 (pC H+ 8 to 13), no significant reduction of U(VI) was observed within 55 days.  相似文献   

10.
Environmental contamination by artificial radionuclides and the evaluation of their sources require precise isotopic analysis and accurate determination of actinide elements above all plutonium and americium. These can be achieved by alpha spectrometry or by inductively coupled plasma mass spectrometry (ICP-MS) after chemical separation. In the present work, a simple, rapid method has been developed for the sequential separation of actinide elements from aqueous solutions and their determination by alpha spectrometry. Extraction chromatography was applied to the separation of 241Am, 244Cm, 239 + 240,238Pu, 237Np and 238,235,234U using microporous polyethylene supporting tri-n-octylamine as the stationary phase and hydrochloric acid with and without reducing agents as the mobile phase. Actinide in 9 M HCl solution is introduced into the anion exchange column; Pu (IV), Np (IV) and U(VI) are retained on the column while Am (III) and Cm passed through. Pu is eluted first, reductively, after which, Np and then U are eluted. The method can be applied to all aqueous solutions which do not contain strong complexing or precipitation agents for the elements considered.  相似文献   

11.
The extraction behavior of Pu(III), Pu(IV), Np(IV) and Np(V) with di(chlorophenyl)-dithiophosphinic acid (DCPDTPA) in toluene from nitric acid solutions was studied systematically. In aqueous solution with high nitric acid concentration, the extraction capability (represented by distribution ratio D) for Pu and Np in different valences with DCPDTPA comes as D Np(IV) > D Pu(IV) > D Np(V) > D Pu(III). A new radiochemical procedure for Np/Pu separation based on DCPDTPA extraction was proposed and tested with simulated samples. The recoveries of Np and Pu are as high as 80 % after the whole separation procedure, with the decontamination factor of trivalent lanthanide fission product element (e.g. Eu) greater than 1.5 × 104. The decontamination factor of Pu–Np is 2.0 × 103, while the decontamination factor of Np–Pu is greater than 4.8 × 103 after additional purification.  相似文献   

12.
The extraction of uranium(VI) and plutonium(IV) from nitric acid into n-dodecane was studied using two isomeric branched alkyl amides, di(2-ethyl hexyl) butyramide (DEHBA) and di(2-ethyl hexyl) isobutyramide (DEHIBA). The extraction ratios of Pu(IV) at relatively high acidities were higher than the corresponding values for U(VI) in the case of DEHBA. However, with DEHIBA the values for Pu(IV) were negligibly small. Pu(IV) was found to be extracted as trisolvate by DEHBA and as disolvate by DEHIBA. U(VI) was extracted by both the amides. From the study of the extraction reactions at different temperatures, it was shown that all the reactions in the present investigation were enthalpy favoured and entropy disfavoured. Separation of Pu(IV) from bulk of U(VI) was feasible. However, the purity of the separated plutonium was not satisfactory in batch extraction studies.  相似文献   

13.
The extractive properties of tri-isoamyl-phosphate (TAP), an indigenously prepared extractant, and the loading capacity of extraction solvent containing TAP for U(VI) and Pu(IV) ions in nitric solution have been investigated. The dependence of the distribution ratio on the concentration of nitric acid showed that TAP has an ability to extract these actinides, while the fission product contaminants are poorly extracted. The distribution data revealed a quantitative extraction of both U(VI) and Pu(IV) from moderate nitric acidities in the range 2–7 mol · dm–3. Slope analysis proved predominant formation of the disolvated organic phase complex of the type UO2(NO3). 2TAP and Pu(NO3)4·2TAP with U(VI) and PU(IV), respectively. On the contrary, the extraction of fission product contaminants such as144Ce,137Cs,9Nb.,147Pr,106Ru,95Zr was almost negligible even at very high nitric acid concentrations in the aqueous phase indicating its potential application in actinide partitioning. The recovery of TAP from the loaded actinides could be easily accomplished by using a dilute sodium carbonate solution or acidified distiled water (0.01 mol · dm–3 HNO3) as the strippant for U(VI) and using uranous nitrate or ferrous sulphamate as that for Pu(IV). Radiation stability of TAP was adequate for most of the process applications.  相似文献   

14.
The fate of actinyl species in the environment is closely linked to oxidation state, since the reduction of An(VI) to An(IV) greatly decreases their mobility due to the precipitation of the relatively insoluble An(IV) species. Here we study the mechanism of the reduction of [AnO(2)](2+) (An = U, Np, Pu) both in aqueous solution and by Fe(II) containing proteins and mineral surfaces, using density functional theory calculations. We find a disproportionation mechanism involving a An(V)-An(V) cation-cation complex, and we have investigated how these complexes are formed in the different environments. We find that the behaviour of U and Pu complexes are similar, but the reduction of Np(V) to Np(IV) would seems to be more difficult, in line with the experimental finding that Np(V) is generally more stable than U(V) or Pu(V). Although the models we have used are somewhat idealised, our calculations suggest that there are strong similarities between the biotic and abiotic reduction pathways.  相似文献   

15.
A comprehensive thermodynamic model, referred to as the Mixed-Solvent Electrolyte model, has been applied to calculate phase equilibria and chemical speciation in selected aqueous actinide systems. The solution chemistry of U(IV, VI), Np(IV, V, VI), Pu(III, IV, V, VI), Am(III), and Cm(III) has been analyzed to develop the parameters of the model. These parameters include the standard-state thermochemical properties of aqueous and solid actinide species as well as the ion interaction parameters that reflect the solution’s nonideality. The model reproduces the solubility behavior and accurately predicts the formation of competing solid phases as a function of pH (from 0 to 14 and higher), temperature (up to 573 K), partial pressure of CO2 (up to \( p_{{{\text{CO}}_{2} }} \)  = 1 bar), and concentrations of acids (to 127 mol·kg?1), bases (to 18 mol·kg?1), carbonates (to 6 mol·kg?1) and other ionic components (i.e., Na+, Ca2+, Mg2+, OH?, Cl?, \( {\text{ClO}}_{4}^{ - } \), and \( {\text{NO}}_{3}^{ - } \)). Redox effects on solubility and speciation have been incorporated into the model, as exemplified by the reductive and oxidative dissolution of Np(VI) and Pu(IV) solids, respectively. Thus, the model can be used to elucidate the phase and chemical equilibria for radionuclides in natural aquatic systems or in nuclear waste repository environments as a function of environmental conditions. Additionally, the model has been applied to systems relevant to nuclear fuel processing, in which nitric acid and nitrate salts of plutonium and uranium are present at high concentrations. The model reproduces speciation and solubility in the U(VI) + HNO3 + H2O and Pu(IV, VI) + HNO3 + H2O systems up to very high nitric acid concentrations (\( x_{{{\text{HNO}}_{3} }} \approx 0.70 \)). Furthermore, the similarities and differences in the solubility behavior of the actinides have been analyzed in terms of aqueous speciation.  相似文献   

16.
The interaction of Np(VI), Pu(VI), Np(V), Np(IV), Pu(IV), Nd(III), and Am(III) with Al(III) in solutions at pH 0–4 was studied by the spectrophotometric method. It was shown that, in the range of pH 3–4, the hydrolyzed forms of neptunyl and plutonyl react with the hydrolyzed forms of aluminium. In the case of Pu(VI), the mixed hydroxoaqua complexes (H2O)3PuO2(-OH)2Al(OH)(H2O)3 2+ or (H2O)4PuO2OAl(OH)(H2O)4 2+ are formed at the first stage of hydrolysis. Np(VI) also forms similar hydroxoaqua complexes with Al(III). The formation of the mixed hydroxoaqua complexes was also observed when Np(IV) or Pu(IV) was simultaneously hydrolyzed with Al(III) at pH 1.5–2.5. The Np(IV) complex with Al(III) has, most likely, the formula (H2O) n (OH)Np(-OH)2Al(OH)(H2O)3 3+. At pH from 2 to 4.1 (when aluminium hydroxide precipitates), the Np(V) or Nd(III) ions exist in solutions with or without Al(III) in similar forms. When pH is increased to 5–5.5, these ions are almost not captured by the aluminium hydroxide precipitate.  相似文献   

17.
N,Ndiethylhydroxylamine (DEHAN) can rapidly reduce Pu(IV) and Np(VI) extractable with trinbutyl phosphate (TBP) to Pu(III) and Np(V) unextractable with TBP in nitric acid solution. In order to apply DEHAN in the purification cycle step of U (noted as contactor 2D) of the secondcycle of the Purex Process to separate Np and Pu from U, the reduction of Np(VI) and the stability of Np(V) with DEHAN and the singlestage reduction extraction and backextraction of Np(VI) have been studied according to the experimental conditions of contactor 2D. The results show that more than 99% of Np(VI) can entirely be reduced to Np(V) with DEHAN within a few minutes either in aqueous or in organic phase containing uranium and without containing uranium, and more than 99% of Np(VI) can be backextracted from the organic to the aqueous phase with DEHAN as a reductant. More than 99% of Np(V) exists in nitric acid solution at least for 8 hours in presence of 0.01 mol/l DEHAN. These results are of benefit to the cascade extractionseparation of U/Np in contactor 2D in order to decontaminate Np from U.  相似文献   

18.
Electrochemical and absorption spectroscopic properties of Pu(IV) and Pu(III) in nitric acid have been investigated by using cyclic voltammetry (CV) and UV–Visible spectroscopy. CV using a glassy carbon electrode suggested that the electrochemical reaction of Pu(IV) nitrate complexes were found to be a quasi-reversible reduction to Pu(III) species. The formal redox potentials (E 0) for Pu(IV)/Pu(III) couples were +0.721, +0.712, +0.706, +0.705, +0.704, 0.694, and +0.696 V (vs. Ag/AgCl) when nitric acid concentrations are 1–7 M nitric acid solutions, respectively. These results indicate that the reduction product of Pu(IV) is only Pu(III). Further details for reaction mechanism of Pu(IV) were discussed on the basis of digital simulation of the experimental cyclic voltammograms. The absorption spectroscopic properties of Pu(III) and Pu(IV) in nitric acid solutions were investigated with UV–Visible spectrophotometry. As a result, it was founds that the intensities of the characteristic absorption peaks of Pu(III) and Pu(IV) tend to decrease with increasing nitric acid concentration for 1–8 M, and the peaks positions shifted longer or shorter wavelengths depending on the complex-forming abilities of Pu(III) and Pu(IV) with an increase in the nitric acid concentration.  相似文献   

19.
The liquid-liquid extraction behavior of plutonium(IV) from aqueous nitric acid media into n-dodecane by di(2-ethylhexyl)sulfoxide (DEHSO) was investigated over a wide range of conditions. Optimum-parameters such as the aqueous phase acidity, reagent and metal concentrations, etc., were established for efficient extraction-separation of tracer as well as macro levels of plutonium. It was found that the extraction increased with increasing nitric acid concentration up to 6M HNO3 and then decreased. Extraction also increased with increasing extractant concentration. After loading of the organic phase with 2 to 50 mg/ml of U(VI), extractability of Pu(IV) became considerably lower. Recovery of Pu(IV) from the organic phase was accomplished using dilute uranium(IV) nitrate as the strippant.  相似文献   

20.
《Electroanalysis》2017,29(12):2744-2751
The solution chemistry of Pu in nitric acid is explored via electrochemistry and spectroelectrochemistry. By utilizing and comparing these techniques, an improved understanding of Pu behavior and its dependence on nitric acid concentration can be achieved. Here the Pu (III/IV) couple is characterized using cyclic voltammetry, square wave voltammetry, and a spectroelectrochemical Nernst step. Results indicate the formal reduction potential of the couple shifts negative with increasing acid concentration and reversible electrochemistry is no longer attainable above 6 M HNO3. Spectroelectrochemistry is also used to explore the irreversible oxidation of Pu(IV) to Pu(VI) and shine light on the mechanism and acid dependence of the redox reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号