首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The values of density, viscosity and speed of sound for the binary liquid mixture of Benzaldehyde with Benzene were measured over the entire range of composition at 303.15, 308.15, and 313.15 K. These values are used to calculate the excess molar volume (V E), deviation in viscosity (Δη), deviation in speed of sound (ΔU), deviation in isentropic compressibility (Δβ s ), excess internal pressure (Δπ), excess intermolecular free length (ΔL f ), excess free volume (V E f ) and excess acoustic impedance (ΔZ). McAllister’s three-body interaction model is used for correlating Kinematic Viscosity of binary mixtures. The excess values were correlated using the Redlich–Kister polynomial equation to obtain their coefficients and standard deviations. The thermophysical properties (density, viscosity, and speed of sound) under the study were fit to the Jouyban–Acree model.  相似文献   

2.
Using direct numerical simulations of Rayleigh–Bénard convection (RBC), we perform a comparative study of the spectra and fluxes of energy and entropy, and the scaling of large-scale quantities for large and infinite Prandtl numbers in two (2D) and three (3D) dimensions. We observe close similarities between the 2D and 3D RBC, in particular, the kinetic energy spectrum Eu(k)~k?13/3, and the entropy spectrum exhibits a dual branch with a dominant k?2 spectrum. We showed that the dominant Fourier modes in 2D and 3D flows are very close. Consequently, the 3D RBC is quasi-two-dimensional, which is the reason for the similarities between the 2D and 3D RBC for large and infinite Prandtl numbers.  相似文献   

3.
The conductance G? and \(\overline {{G^{ - 1}}} \) resistance average over realizations of disorder have been calculated for various sizes of square lattices L. In contrast with different direction of change in the two quantities at percolation in lattices with the binary spread of conductances of links (g i = 0 or 1), it has been found that the mean conductance and resistance of lattices decrease simultaneously with an increase in L in the case of an exponential distribution of local conductances g i = exp(?kxi), where x i ∈ [0,1] are random numbers. When L is smaller than the disorder length L0 = bkv, G?(L) and \(\overline {{G^{ - 1}}} \)(L) are proportional to L?n with n = k/5 and k/6, respectively. A similar behavior is characteristic of the distributions of conductances of links, which simulate a transition between the open and tunneling regimes in semiconducting lattices of antidots created in a two-dimensional electron gas.  相似文献   

4.
The statistical characteristics of the Kraichnan direct cascade for two-dimensional hydrodynamic turbulence are numerically studied (with spatial resolution 8192 × 8192) in the presence of pumping and viscous-like damping. It is shown that quasi-shocks of vorticity and their Fourier partnerships in the form of jets introduce an essential influence in turbulence leading to strong angular dependencies for correlation functions. The energy distribution as a function of modulus k for each angle in the inertial interval has the Kraichnan behavior, ~k –4, and simultaneously a strong dependence on angles. However, angle average provides with a high accuracy the Kraichnan turbulence spectrum E k = C Kη2/3k–3, where η is the enstrophy flux and the Kraichnan constant C K ? 1.3, in correspondence with the previous simulations. Familiar situation takes place for third-order velocity structure function S 3 L which, as for the isotropic turbulence, gives the same scaling with respect to the separation length R and η, S 3 L = C 3ηR 3, but the average over the angles and time differs from its isotropic value.  相似文献   

5.
An exact definition of the group velocity v g is proposed for a wave process with arbitrary dispersion relation ω = ω′(k) + ″(k). For the monochromatic approximation, a limit expression v g (k) is obtained. A condition under which v g (k) takes the form of the Kuzelev–Rukhadze expression [1] ′(k)/dk is found. In the general case, it appears that v g (k) is defined not only by the dispersion relation ω(k), but also by other elements of the initial problem. As applied to the dissipative medium, it is shown that v g (k) defines the field energy transfer velocity, and this velocity does not exceed thee light speed in vacuum. An expression for the energy transfer velocity is also obtained for the case where the dispersion relation is given in the form k = k′(ω) + ik″(ω) which corresponds to the boundary problem.  相似文献   

6.
The hyperfine structure of the groundstate 6s 2 S 1/2 and the nuclear magnetic dipole moment of gold 197 have been studied by the atomic beam magnetic resonance technique. A special high frequency arrangement is described. The hyperfine structure separationΔ v was determined fromΔF=1 transitions. The magnetic dipole momentμ I was measured by a direct method. The experiments yield the following results:Δv (2S1/2)=(6099,309±0,010) Mc/secμ I (Au197)=+(0,1445±0,0014)μ K.  相似文献   

7.
We study an inverse problem for the two-dimensional random Schrödinger equation (Δ + q + k 2)u = 0. The potential q(x) is assumed to be a Gaussian random function whose covariance operator is a classical pseudodifferential operator. We show that the backscattered field, obtained from a single realization of the random potential q, determines uniquely the principal symbol of the covariance operator of q. The analysis is carried out by combining harmonic and microlocal analysis with stochastic methods.  相似文献   

8.
Dielectric relaxation studies of binary (jk) polar mixtures of tetrahydrofuran with N-methyl acetamide, N,N-dimethyl acetamide, N-methyl formamide and N,N-dimethyl formamide dissolved in benzene(i) for different weight fractions (w j k ’s) of the polar solutes and mole fractions (x j ’s) of tetrahydrofuran at 25 °C are attempted by measuring the conductivity of the solution under 9.90 GHz electric field using Debye theory. The estimated relaxation time (τ j k ’s) and dipole moment (μ j k ’s) agree well with the reported values signifying the validity of the proposed methods. Structural and associational aspects are predicted from the plot of τ j k and μ j k against x j of tetrahydrofuran to arrive at solute–solute (dimer) molecular association upto x j =0.3 of tetrahydrofuran and thereafter solute–solvent (monomer) molecular association upto x j =1.0 for all systems except tetrahydrofuran + N,N-dimethyl acetamide.  相似文献   

9.
Let H(?)=?? 2d2/dx 2+V(x) be a Schrödinger operator on the real line, W(x) be a bounded observable depending only on the coordinate and k be a fixed integer. Suppose that an energy level E intersects the potential V(x) in exactly two turning points and lies below V =lim?inf?|x|→∞ V(x). We consider the semiclassical limit n→∞, ?=? n →0 and E n =E where E n is the nth eigenenergy of H(?). An asymptotic formula for 〈n|W(x)|n+k〉, the non-diagonal matrix elements of W(x) in the eigenbasis of H(?), has been known in the theoretical physics for a long time. Here it is proved in a mathematically rigorous manner.  相似文献   

10.
We analyze the detailed time dependence of the wave function ψ(x,t) for one dimensional Hamiltonians \(H=-\partial_{x}^{2}+V(x)\) where V (for example modeling barriers or wells) and ψ(x,0) are compactly supported.We show that the dispersive part of ψ(x,t) is the Borel sum of its asymptotic series in powers of t ?1/2, t→∞. The remainder, the difference between ψ and the Borel sum, i.e., the exponential part of the transseries of ψ, is a convergent expansion of the form \(\sum_{k=0}^{\infty}g_{k}\Gamma_{k}(x)e^{-\gamma_{k} t}\), where Γ k are the Gamow vectors of H, and k are the associated resonances; generically, all g k are nonzero. For large k, γ k ~const?klog?k+k 2 π 2 i/4. The effect of the Gamow vectors is visible when time is not very large, and the decomposition defines rigorously resonances and Gamow vectors in a nonperturbative regime, in a physically relevant way.The decomposition allows for calculating ψ for moderate and large t, to any prescribed exponential accuracy, using optimal truncation of power series plus finitely many Gamow vectors contributions.The analytic structure of ψ is perhaps surprising: in general (even in simple examples such as square wells), ψ(x,t) turns out to be C in t but nowhere analytic on ?+. In fact, ψ is t-analytic in a sector in the lower half plane and has the whole of ?+ a natural boundary. In the dual space, we analyze the resurgent structure of ψ.  相似文献   

11.
The atomic dynamics of the binary Al100–xCux system is simulated at a temperature T = 973 K, a pressure p = 1.0 bar, and various copper concentrations x. These conditions (temperature, pressure) make it possible to cover the equilibrium liquid Al100–xCux phase at copper concentrations 0 ≤ x ≤ 40% and the supercooled melt in the concentration range 40% ≤ x ≤ 100%. The calculated spectral densities of the time correlation functions of the longitudinal \({\tilde C_L}\)(k, ω) and transverse \({\tilde C_T}\)(k, ω) currents in the Al100–xCux melt at a temperature T = 973 K reveal propagating collective excitations of longitudinal and transverse polarizations in a wide wavenumber range. It is shown that the maximum sound velocity in the vL(x) concentration dependence takes place for the equilibrium melt at an atomic copper concentration x = 10 ± 5%, whereas the supercooled Al100–xCux melt saturated with copper atoms (x ≥ 40%) is characterized by the minimum sound velocity. In the case of the supercooled melt, the concentration dependence of the kinematic viscosity ν(x) is found to be interpolated by a linear dependence, and a deviation from the linear dependence is observed in the case of equilibrium melt at x < 40%. An insignificant shoulder in the ν(x) dependence is observed at low copper concentrations (x < 20%), and it is supported by the experimental data. This shoulder is caused by the specific features in the concentration dependence of the density ρ(x).  相似文献   

12.
Using an atomic beam magnetic resonance apparatus the nuclear magnetic dipole momentμ I of the stable isotope Au197 was measured directly with the doublet method. The result isμ I(Au197)=0.143491 (9)μ n, uncorrected for atomic diamagnetism. Further hyperfine structure measurements were performed in the ground states of K39, Ag107, Ag109 and Au197 with the following results:Δv(K39)=461.719723 (38) MHzΔv(Ag107)=1712.512111 (18) MHzΔv(Ag109)=1976.932075 (17) MHzΔv(Au197)=6099.320184 (13) MHzg J(Ag107)/g J(K39)=1.0000260 (20)g J(Au197)/g J(K39)=1.0005076 (20).  相似文献   

13.
14.
The maximum value of the light extinction coefficient μ, which can be observed in a dispersive medium with a relative refractive index n of the scattering particles, is studied within the framework of a quasi-crystalline approximation for nonabsorbing dispersive media consisting of monodisperse spherical scatterers. A change in the diffraction parameter x of the scattering particles and their volume concentration c v is accompanied by nonmonotonic variations of the extinction coefficient, and the function μ(x, c v ) exhibits several maxima. The dimensions and concentrations of particles are determined, for which the extinction coefficient reaches the absolute maximum μmax. The μmax value exhibits a monotonic growth with increasing relative refractive index n of the scattering particles. The conditions of validity of the Ioffe-Regel criterion of radiation localization have been studied. It is established that the localization in nonabsorbing dispersive media can be observed only for n ? 2.7. The intervals of x and c v in which the criterion of radiation localization is satisfied in dispersive media consisting of particles with n = 3.0 and 3.5 are determined.  相似文献   

15.
An experiment on search for neutron nuclei in the reaction of neutron-induced fission of 235U nuclei has been performed on a nuclear reactor. The hypothetical reaction 122Te(xn, (x ? k)n)122 + k Te → (β?) → 122 + k I (x = k ≥ 10) has been investigated. The radiochemical method for selecting iodine isotopes from tellurium was used. The upper limit on the probability of formation of neutron clusters has been obtained: P k ≤ 10?8 (fission)?1 for 11n clusters and P k ≤ 10?9 (fission)?1 for 11n clusters.  相似文献   

16.
In this paper we have derived the fractional-order Schrödinger equation composed of Jumarie fractional derivative. The solution of this fractional-order Schrödinger equation is obtained in terms of Mittag–Leffler function with complex arguments, and fractional trigonometric functions. A few important properties of the fractional Schrödinger equation are then described for the case of particles in one-dimensional infinite potential well. One of the motivations for using fractional calculus in physical systems is that the space and time variables, which we often deal with, exhibit coarse-grained phenomena. This means infinitesimal quantities cannot be arbitrarily taken to zero – rather they are non-zero with a minimum spread. This type of non-zero spread arises in the microscopic to mesoscopic levels of system dynamics, which means that, if we denote x as the point in space and t as the point in time, then limit of the differentials dx (and dt) cannot be taken as zero. To take the concept of coarse graining into account, use the infinitesimal quantities as (Δx) α (and (Δt) α ) with 0 < α < 1; called as ‘fractional differentials’. For arbitrarily small Δx and Δt (tending towards zero), these ‘fractional’ differentials are greater than Δx (and Δt), i.e. (Δx) α > Δx and (Δt) α > Δt. This way of defining the fractional differentials helps us to use fractional derivatives in the study of dynamic systems.  相似文献   

17.
We consider the long time, large scale behavior of the Wigner transform W ? (t,x,k) of the wave function corresponding to a discrete wave equation on a 1-d integer lattice, with a weak multiplicative noise. This model has been introduced in Basile et al. in Phys. Rev. Lett. 96 (2006) to describe a system of interacting linear oscillators with a weak noise that conserves locally the kinetic energy and the momentum. The kinetic limit for the Wigner transform has been shown in Basile et al. in Arch. Rat. Mech. 195(1):171–203 (2009). In the present paper we prove that in the unpinned case there exists γ 0>0 such that for any γ∈(0,γ 0] the weak limit of W ? (t/? 3/2γ ,x/? γ ,k), as ??1, satisfies a one dimensional fractional heat equation \(\partial_{t} W(t,x)=-\hat{c}(-\partial_{x}^{2})^{3/4}W(t,x)\) with \(\hat{c}>0\). In the pinned case an analogous result can be claimed for W ? (t/? 2γ ,x/? γ ,k) but the limit satisfies then the usual heat equation.  相似文献   

18.
A relationship is derived for the correlation length L determining the size of the region in a solid solution in which excitations are scattered coherently. The correlation length depends on the fraction of impurity atoms x in the solid solution and the lattice dimension d. In the physical analysis of single-particle scattering processes in the solid solution and calculations, it is sufficient to take into account clusters with the number of cells n corresponding to the correlation volume L d . A theoretical analysis is illustrated by calculations of the spectral functions of the solid solution at different values of x and n. The multiple-occupancy corrections (polynomials in powers of x) to scattering diagrams are calculated using the method of sequential breaking apart of the interaction lines in the diagrams for the self-energy part. The method used was previously applied to the case of scattering by a single impurity. In this paper, the efficiency of the method is checked for scattering by multi-impurity clusters. It is demonstrated that the method can be useful in analyzing and estimating the contributions of scattering diagrams.  相似文献   

19.
We discuss the procedure of different partitions in the finite set of N integer numbers and construct generic formulas for a bijective map of real numbers s y , where y = 1, 2,…, N, N = \( \underset{k=1}{\overset{n}{\varPi}}{X}_k, \) and X k are positive integers, onto the set of numbers s(y(x 1, x 2,…, x n )). We give the functions used to present the bijective map, namely, y(x 1, x 2, …, x n ) and x k (y) in an explicit form and call them the functions detecting the hidden correlations in the system. The idea to introduce and employ the notion of “hidden gates” for a single qudit is proposed. We obtain the entropic-information inequalities for an arbitrary finite set of real numbers and consider the inequalities for arbitrary Clebsch–Gordan coefficients as an example of the found relations for real numbers.  相似文献   

20.
We propose a model of a Brownian motor that performs a useful work against a load force F in an asymmetric periodic potential V(x) = V(x + 2L) that undergoes random shifts by a half period L with a frequency γ. An arbitrarily shaped potential profile is repeated with an energy shift ΔV in both half-periods L, while the periodicity of the function V(x) is ensured by its jumps at x = 0 and x = L. The boundary condition at x = 0 for the distribution function of a Brownian particle allows us to introduce a high and narrow potential barrier V0 that blocks the reverse current and leads to high efficiency of the motor (the ratio of the useful work done against the load force F to the energy imparted to the particle through the potential shifts). Based on this model, we derived exact analytical expressions for the current J and the efficiency η. In the special case of piecewise-linear potentials, J and η were plotted against F and γ for various values of the parameters ΔV and V0. We discuss the influence of the potential shape and fluctuation frequency on the main characteristics of the motor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号