首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The rates of decay of O(3P) atoms in H2/CO/N2 mixtures in a discharge flow system have been measured, using O + CO chemiluminescence. The mechanism is: O + H2 → OH + H (1), O + OH → O2 + H (2), CO + OH → CO2 + H (3). At 425 K, k2/k3 = 260 ± 20; literature values of k3 combine to yield k2 = (2.65 ± 0.52) × 1010 dm3 mol?1 s?1.  相似文献   

2.
Flash photolysis of CH3CHO and H2CO in the presence of NO has been investigated by the intracavity laser spectroscopy technique. The decay of HNO formed by the reaction HCO + NO → HNO + CO was studied at NO pressures of 6.8–380 torr. At low NO pressure HNO was found to decay by the reaction HNO + HNO → N2O + H2O. The rate constant of this reaction was determined to be k1 = (1.5 ± 0.8) × 10?15 cm3/s. At high NO pressure the reaction HNO + NO → products was more important, and its rate constant was measured to be k2 = (5 ± 1.5) × 10?19 cm3/s. NO2 was detected as one of the products of this reaction. Alternative mechanisms for this reaction are discussed.  相似文献   

3.
The rate constant for the reaction HCO + HCO → CH2O + CO was measured at temperatures between 298 and 475 K. The formyl radicals were produced by flash photolysis of formaldehyde and were detected by resonance absorption at 614.5 nm. At low pressure and room temperature, k1 = (3.35 ± 0.85) × 10?11 cm3 molecule?1 s?1. There is no discernable variation of k1 with temperature up to 475 K.  相似文献   

4.
《Chemical physics letters》1986,132(3):225-230
Using a combination of XeCl exciplex laser flash photolysis of gas-phase glyoxal and formaldehyde and time-resolved cw dye laser absorption at 614.59 nm, we have determined the ratio k1/σ for the reaction HCO+HCO → H2CO+CO (1) at 295 ±2 K. Similar studies involving the 308 nm photolysis of a variety of aldehydes combined with a determination of the absolute yields of the resulting hydrocarbon products have allowed us to deduce the initial yields of HCO radicals and hence the absorption cross section for HCO at the monitoring wavelength. We find σ=(2.3±0.6) × 10−18 cm2, giving k1=(7.5±2.9)× 10−11cm3 molecule−1 s−1. Our values are compared with previous results.  相似文献   

5.
The rate constants for the reactions C2O + H → products (1) and C2O + H2 → products (2) have been determined at room temperature by means of laser-induced fluorescence detection of C2O radicals, generated either by the KrF excimer laser photolysis Of C3O2, or by the reaction of C3O2 with O atoms. Values of k1 = (3.7 ± 1.0) × 10?11 cm3 s?1 and k2 = (7 ± 3) × 10?13 cm3 s?1 were obtained.  相似文献   

6.
Reactions of CF3Br with H atoms and OH radicals have been studied at room temperature at 1–2 torr pressures in a discharge flow reactor coupled to an EPR spectrometer. The rate constant of the reaction H + CF3Br → CF3 + HBr (1) was found to be k1 = (3.27 ± 0.34) × 10?14 cm3/molec·sec. For the reaction of OH with CF3Br (8) an upper limit of 1 × 10?15 cm3/molec·sec was determined for k8. When H atoms were in excess compared to NO2, used to produce OH radicals, a noticeable reactivity of OH was observed as a result of the reaction OH + HBr → H2O + Br, HBr being produced from reaction (1).  相似文献   

7.
The kinetics of the reaction NH2 + NO → N2 + H2O were studied, using a conventional flash photolysis system. A value of k1 = (1.1 ± 0.2) × 1010 & mole?1 s?1 was obtained at room temperature and in the pressure range 2–700 torr in the presence of nitrogen. A slight negative temperature coefficient was observed between 300 and 500 K, equivalent to a negative activation energy of 1.05 ± 0.2 kcal mole?1.  相似文献   

8.
The rate constant for the reaction Br + O3 → BrO + O2 has been measured over the temperature range 224 to 422 K in a discharge flow system using a mass spectrometer as a detector. Results, expressed in the form k1 = (3.34 ± 0.40) × 10?11 X exp[?(978 ± 36)/T] cm3 s?1, are compared with previous measurements.  相似文献   

9.
The rate constant of the reaction OH + HCl → H2O + Cl was measured in a flow tube over the temperature range 224 to 460°K using resonance fluorescence detection of OH. An Arrhenius expression k1 = (2.0 ± 0.1) × 10?12 exp [?(620 ± 20 cal/mole)/RT] was obtained. Stratospheric and reaction kinetic implications are discussed briefly.  相似文献   

10.
The rate constants for the reactions OH(X2Π, ν = O) + NH3k1 H2O + NH2 and OH(X2Π, ν = O) + O3k2 → HO2 + O2 were measured at 298°K by the flash photolysis resonance fluorescence technique. The values of the rate constants thus obtained are K1 = (4.1 ± 0.6) × 10?14 and k2 = (6.5 ± 1.0) × 10?14 in units of cm3 molecule ?1 sec1. The results are discussed in terms of understanding the dynamics of the perturbed stratosphere.  相似文献   

11.
The rate coefficients of the reactions of CN and NCO radicals with O2 and NO2 at 296 K: (1) CN + O2 → products; (2) CN + NO2 → products; (3) NCO + O2 → products and (4) NCO + NO2 → products have been measured with the laser photolysis-laser induced fluorescence technique. We obtained k1 = (2.1 ± 0.3) × 10?11 and k2 = (7.2 ± 1.0) × 10?11 cm3 molecule?t s?1 which agree well with published results. As no reaction was observed between NCO and O2 at 297 K, an upper limit of k3 < 4 × 10?17 cm3 molecule?1 S?1 was estimated. The reaction of NCO with NO2 has not been investigated previously. We measured k4 = (2.2 ± 0.3) × 10?11 cm3 molecule?1 s?1 at 296 K.  相似文献   

12.
The reactions of IO radicals with CH3SCH3, CH3SH, C2H4, and C3H6 have been studied using the discharge flow method with direct detection of IO radicals by mass spectrometry. The absolute rate constants obtained at 298 K are the following: IO + CH3SCH3 → products (1): k1 = (1.5 ± 0.2) × 10?14; IO + CH3SH → products (2): k2 = (6.6 ± 1.3) × 10?16; IO + C2H4 →products (3): k3 < 2 × 10?16; IO + C3H6 → products (4): k4 < 2 × 10?16 (units are cm3 molecule?1 s?1). CH3S(O)CH3 and HOI were found as products of reactions (1) and (2), respectively. The present lower value of k1 compared to our previous determination is discussed.  相似文献   

13.
The D + H2(ν = 1) reaction, D + H2(ν = 1) → Ka HD(ν = 1) + H, → Kn HD(ν = 0) + H, → Kr D + H2(ν = 0) has been studied. The measurements were made in a flow-tube apparatus at 300 K. Vibrationally excited H2 was generated in a furnace and D atoms in a microwave discharge. EPR and thermometric techniques were used for the detection of D and H atoms and H2(ν = 1). The product branching rate constants (in CM3/Molecule s) were found to be Ka = (10.7 ± 4.1) × 10?13. Kn = (5.4 ± 2.7) × 10?13, Kr, < 2.7 × 10?13.  相似文献   

14.
The reactions Br + NO2 + M → BrNO2 + M (1) and I + NO2 + M → INO2 + M (2) have been studied at low pressure (0.6-2.2 torr) at room temperature and with helium as the third body by the discharge-flow technique with EPR and mass spectrometric analysis of the species. The following third order rate constants were found k1(0) = (3.7 ± 0.7) × 10?31 and k2(0) = (0.95 ± 0.35) × 10?31 (units are cm6 molecule?2 s?1). The secondary reactions X + XNO2X2 + NO2 (X = Br, I) have been studied by mass spectrometry and their rate constants have been estimated from product analysis and computer modeling.  相似文献   

15.
The rate constants for the reaction H + HBr → H2 + Br were measured between 217 and 383 K using pulsed laser photolysis of HBr and cw resonance fluorescence detection of H(2S). The temporal profiles of the product Br atoms were also monitored to obtain the rate constant at 298 K. The yield of Br from the reaction was determined to be unity. The rate coefficient as a function of temperature is given by the Arrhenius expression, k 1 = (2.96 ± 0.44) × 10?11 exp(?(460 ± 40)/T) cm3 molecule?1 s?1. The quoted errors are at the 95% confidence level and include estimated systematic errors. Our results are compared with those from previous direct measurements. © John Wiley & Sons, Inc.  相似文献   

16.
The temperature dependence of the rate constant for the reaction HO2 + HO2 → H2O2 + O2 (2k1) has been determined using flash photolysis techniques, over the temperature range 298–510 K, in a nitrogen diluent at a total pressure of 700 Torr. The overall second order state constant is given by k1 = (4.14 ± 1.15) × 10?13 exp[(630 ± 115)/T] cm3 molecule?1 s?1, where the quoted errors refer to one standard deviation. This result is compared with previous findings and the negative activation energy is shown to be consistent with the observation that the rate constant is pressure dependent at 700 Torr.  相似文献   

17.
The kinetics of C2H5O2 and C2H5O2 radicals with NO have been studied at 298 K using the discharge flow technique coupled to laser induced fluorescence (LIF) and mass spectrometry analysis. The temporal profiles of C2H5O were monitored by LIF. The rate constant for C2H5O + NO → Products (2), measured in the presence of helium, has been found to be pressure dependent: k2 = (1.25±0.04) × 10?11, (1.66±0.06) × 10?11, (1.81±0.06) × 10?11 at P (He) = 0.55, 1 and 2 torr, respectively (units are cm3 molecule?1 s?1). The Lindemann-Hinshelwood analysis of these rate constant data and previous high pressure measurements indicates competition between association and disproportionation channels: C2H5O + NO + M → C2H5ONO + M (2a), C2H5O + NO → CH3CHO + HNO (2b). The following calculated average values were obtained for the low and high pressure limits of k2a and for k2b : k = (2.6±1.0) × 10?28 cm6 molecule?2 s?1, k = (3.1±0.8) × 10?11 cm3 molecule?1 s?1 and k2b ca. 8 × 10?12 cm3 molecule?1 s?1. The present value of k, obtained with He as the third body, is significantly lower than the value (2.0±1.0) × 10?27 cm6 molecule?2 s?1 recommended in air. The rate constant for the reaction C2H5O2 + NO → C2H5O + NO2 (3) has been measured at 1 torr of He from the simulation of experimental C2H5O profiles. The value obtained for k3 = (8.2±1.6) × 10?12 cm3 molecule?1 s?1 is in good agreement with previous studies using complementary methods. © 1995 John Wiley & Sons, Inc.  相似文献   

18.
Rate constants of Br atom reactions have been determined using a relative kinetic method in a 20 l reaction chamber at total pressures between 25 and 760 torr in N2 + O2 diluent over the temperature range 293–355 K. The measured rate constants for the reactions with alkynes and alkenes showed dependence upon temperature, total pressure, and the concentration of O2 present in the reaction system. Values of (6.8 ± 1.4) × 10?15, (3.6 ± 0.7) × 10?14, (1.5 ± 0.3) × 10?12, (1.6 ± 0.3) × 10?13, (2.7 ± 0.5) × 10?12, (3.4 ± 0.7) × 10?12, and (7.5 ± 1.5) × 10?12 (units: cm3 s?1) have been obtained as rate constants for the reactions of Br with 2,2,4-trimethylpentane, acetylene, propyne, ethene, propene, 1-butene, and trans-2-butene, respectively, in 760 torr of synthetic air at 298 K with respect to acetaldehyde as reference, k = 3.6 × 10?12 cm3 s?1. Formyl bromide and glyoxal were observed as primary products in the reaction of Br with acetylene in air which further react to form CO, HBr, HOBr, and H2O2. Bromoacetaldehyde was observed as an primary product in the reaction of Br with ethene. Other observed products included CO, CO2, HBr, HOBr, BrCHO, bromoethanol, and probably bromoacetic acid.  相似文献   

19.
The rate constant for the reaction or NH3 + OH → NH2 + H2O has been measured in a high temperature fast flow reactor over the range 294–1075 K k = (5.41 ± 0.86) × 10-12 exp[?(2120 ± 143) cal mole?1/RT cm3 molecule?1 s?1. This result is compared with literature values and discussed.  相似文献   

20.
Relative rate measurements of the reactions of the HO-radical with CO [HO + CO → H + CO2 (1)] and with isobutane [HO + iso-C4H10 → H2O + t-(or iso-)C4H9 (3)] have been made through the photolysis of dilute mixtures of HONO with CO, iso-C4H10, NO2, and NO in simulated air at 700 and 100 torr pressure and 25 ± 2°C. In situ, long path, FT-IR analysis of the reactants and products provided essentially continuous monitoring of the reactions during the course of the experiments. The kinetic analysis of the data coupled with Greiner's estimate of k3 give new estimates of k1 = 439 ± 24 ppm?1 min?1 in air at 700 torr and k1 = 203 ± 29 ppm?1 in air at 100 torr. The results confirm the recent conclusions of Cox and Sie and their co-workers that the rate constant for reaction (1) is pressure dependent. Modeliers of the chemical changes which occur in the troposphere should adopt a new value for the rate constant k1 which is about a factor of two larger than that in current use by most groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号