首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cerium intermetallic compounds exhibit anomalous physical properties such as heavy fermion and Kondo behaviors. Here, an ab initio study of the electronic structure, magnetic properties, and mixed valence character of Ce2Ni3Si5 using density functional theory (DFT) is presented. Two theoretical methods, including pure Perdew–Burke–Ernzerhof (PBE) and PBE + U , are used. In this study, Ce3+ and Ce4+ are considered as two different constituents in the unit cell. The formation energy calculations on the DFT level propose that Ce is in a stable mixed valence of 3.379 at 0 K. The calculated electronic structure shows that Ce2Ni3Si5 is a metallic compound with a contribution at the Fermi level from Ce 4f and Ni 3d states. With the inclusion of the effective Hubbard parameter (U eff), the five valence electrons of 5 Ce3+ ions are distributed only on Ce3+ 4f orbitals. Therefore, the occupied Ce3+ 4f band is located in the valence band (VB) while Ce4+ 4f orbitals are empty and Located at the Fermi level. The calculated magnetic moment in Ce2Ni3Si5 is only due to cerium (Ce3+) in good agreement with the experimental results. The U eff value of 5.4 eV provides a reasonable magnetic moment of 0.981 for the unpaired electron per Ce3+ ion. These results may serve as a guide for studying present mixed valence cerium‐based compounds. © 2017 Wiley Periodicals, Inc.  相似文献   

2.
The isotypic nitridosilicates MYb[Si4N7] (M = Sr, Ba, Eu) were obtained by the reaction of the respective metals with Si(NH)2 in a radiofrequency furnace below 1600 °C. On the basis of powder diffraction data of MYb[Si4N7] Rietveld refinements of the lattice constants were performed; these confirmed the previously published single‐crystal data. The compounds contain a condensed network of corner‐sharing [N(SiN3)4] units. The central nitrogen thus exhibits ammonium character. Magnetic susceptibility measurements of MYb[Si4N7] (M = Sr, Ba, Eu) show paramagnetic behavior with experimental magnetic moments of 3.03(2), (Sr), 2.73(2) (Ba), and 9.17(2) (Eu) μB per formula unit. In EuYbSi4N7 the europium and ytterbium atoms are in stable divalent and trivalent states, respectively. According to the non‐magnetic character of the alkaline earth cations, ytterbium has to be in an intermediate valence state YbIII‐x in the strontium and barium compound. Consequently, either a partial exchange N3—/O2— resulting in compositions MYbIII‐x[Si4N7—xOx] or an introduction of anion defects according to MYbIII‐x[Si4N7—x/3x/3] has to be assumed. The phase width 0 ≤ x ≤ 0.4 was estimated according to the magnetic measurements. 151Eu Mössbauer spectra of EuYb[Si4N7] at 78 K show a single signal at an isomer shift of δ = —12.83(3) mm s—1 subject to quadrupole splitting of ΔEQ = 5.7(8) mm s—1, compatible with purely divalent europium.  相似文献   

3.
Photoelectron spectra of 4d and valence states in RVO4 (R = Y, Nd, Eu, Gd, Tb, Dy, Yb) have been investigated. The experimental spectra are interpreted using the results of the Xα discrete variational method calculations for orthovanadates. Transformations of electronic structure and covalency in the RVO4 series are discussed. It is shown that lanthanide 4f orbitals significantly mix with the O 2pAO's and hybridize with the rare-earths 5pAO's. The 5p levels spin-orbital splitting in orthovanadates has been evaluated.  相似文献   

4.
The new compound YbGe2.83 was obtained from the reaction of Yb and Ge in liquid indium. The crystal structure of YbGe2.83 adopts the trigonal, P3?m1 space group with a=b=8.3657(12) Å and c=7.0469(14) Å. The structure of YbGe2.83 is a variant of the CaAl2Si2 structure type with ordered vacancies. Germanium atoms form double layers of puckered hexagons creating slabs that sandwich the Yb atoms. YbGe2.83 can be classified as a Zintl compound with the formula Yb(2+x)+(Ge2.83)(2+x)−. The deficiencies at the Ge sites cause a mixed/intermediate valent state of ytterbium (Yb2.35+). Valence bond sum calculations suggest an average valence of Yb ions in YbGe2.83 of 2.51 consistent with an intermediate valence compound.  相似文献   

5.
The ternary hafnium silicon arsenide, Hf(SixAs1−x)As, has been synthesized with a phase width of 0.5?x?0.7. Single-crystal X-ray diffraction studies on Hf(Si0.5As0.5)As showed that it adopts the ZrSiS-type structure (Pearson symbol tP6, space group P4/nmm, Z=2, a=3.6410(5) Å, c=8.155(1) Å). Physical property measurements indicated that it is metallic and Pauli paramagnetic. The electronic structure of Hf(Si0.5As0.5)As was investigated by examining plate-shaped crystals with laboratory-based X-ray photoelectron spectroscopy (XPS) and synchrotron radiation photoemission spectroscopy (PES). The Si 2p and As 3d XPS binding energies were consistent with assignments of anionic Si1− and As1-. However, the Hf charge could not be determined by analysis of the Hf 4f binding energy because of electron delocalization in the 5d band. To examine these charge assignments further, the valence band spectrum obtained by XPS and PES was interpreted with the aid of TB-LMTO band structure calculations. By collecting the PES spectra at different excitation energies to vary the photoionization cross-sections, the contributions from different elements to the valence band spectrum could be isolated. Fitting the XPS valence band spectrum to these elemental components resulted in charges that confirm that the formulation of the product is Hf2+[(Si0.5As0.5)As]2−.  相似文献   

6.
The X-ray and UV photoemission valence band spectra of NiO are interpreted using the molecular orbital theory for the NiO10?6 cluster and the sudden approximation (monopole selection rules). They exhibit the effects of crystal field splitting, multiplet splitting, electron shake-up (O 2pebg→ Ni 3deag). relaxation and Ni 3dO 2p hybridization. Shake-up satellite data indicate that the NiO optical absorption edge near 4 eV is associated with an O 2p → Ni 3d transition. The NiO valence electronic structure obtained in this work is compared with band structure models of Wilson and Mattheiss.  相似文献   

7.
赵一新  崔孟忠  唐小真  王曙光 《化学学报》2005,63(14):1257-1262
在B3LYP/6-31+G(d)的水平上, 对两种含有手性Si原子的新型有机硅单体Si2(CH3)2H2N2(C2H5)4和Si4(CH3)4H4N2(C6H5)2的几种异构体进行了研究, 在全参量几何构型优化的基础上, 进行了简谐振动频率计算, 同时对所研究的体系进行了热力学性质和低能激发态的含时密度泛函理论(TDDFT)计算. 理论计算表明, 构象异构体之间的红外光谱差异不大, 热力学和低能激发态性质也相似; 顺/反结构相似的异构体之间红外光谱差异不大, 但热力学和低能激发态性质却呈现差异; 旋光异构体或顺/反结构相差较大的异构体之间, 红外光谱和热力学及低能激发态性质有明显的差异. 从理论上解释了实验红外光谱中Si—H振动峰的裂分是由异构体的存在所致, 并找到裂分峰所对应的异构结构. Si—H键振动频率与其键长相关.  相似文献   

8.
The electronic structure of a series of phenylsilanes Ph4?n SiH n (n = 0?C3) is studied by X-ray emission spectroscopy and quantum chemical calculations by the density functional theory method. Based on the calculations theoretical X-ray emission SiK??1 spectra of phenylsilanes Ph4?n SiH n (n = 0?C4) are constructed and their energy structure and shape turn out to be well consistent with experiment. The distribution of the electron density of states with different symmetry of Si, C, H atoms are also constructed. An analysis of the obtained X-ray fluorescent SiK??1 spectra and the distribution of the electron density of states in Ph4Si and Ph3SiH compounds shows that their energy structure is mainly determined by a system of the energy levels of phenyl ligands weakly perturbed by interactions with valence AOs of silicon. In the energy structure of MOs of the PhSiH3 compound, energy orbitals related to t 2 and a 1 levels of tetrahedral SiH4 are mainly presented.  相似文献   

9.
Novel SiON glasses obtained by melting mixtures of crystalline α-SiO2 and α-Si3N4 were investigated by means of X-ray photoelectron spectroscopy (XPS). The incorporation of nitrogen into the SiO2 network was recently proved by 29Si-MAS-NMR (magic-angle spinning nuclear magnetic resonance) and Si K-XANES (X-ray absorption near edge structure). The Si 2p XPS and the Si KLL XAES (X-ray excited Auger electron spectroscopy) studies of the SiON glasses confirm the formation of mixed structural units (SiOxN4-x) by the presence of an additional spectral component energetically located between SiO2- and Si3N4-like signals. The N 1s and O 1s XPS spectra support the conclusion about the incorporation of nitrogen into the SiO2 network.  相似文献   

10.
The rubidium ytterbium titanium phosphates Rb2YbTi(PO4)3, (I), and Rb2Yb0.32Ti1.68(PO4)3, (II), have been structurally characterized from X‐ray data collected at both 293 and 150 K. Compound (II) is blue owing to the presence of mixed‐valence titanium (41% Ti3+ + 59% Ti4+). Both (I) and (II) belong to the langbeinite structure type, with mixed Yb/Ti populations in the two crystallographically independent octahedral sites (of symmetry 3). Ytterbium favours one of these sites, where about two‐thirds of the Yb atoms are found. The O‐atom displacement parameters are large in both compounds at both temperatures.  相似文献   

11.
The problem of the prediction of the valence IPs for silanes is considered. It is shown that the data on the silicon band structure combined with the photoelectron spectra of SiH4, and Si2H6 permit to obtain the parameter scale, which includes all the nearest neighbour, second neighbour and the main third neighbour interaction parameters. Using the derived parameter scale the vertical ionization potentials of Si3H8, SiH(SiH3)3, Si(SiH3)4, the infinite polysilane valence band structure and the inner a 1g level for disilane are calculated. All the calculated levels are located above ? 20 eV and are expected to be measurable by the He (I) photoelectron spectroscopy.  相似文献   

12.
The hydrogenated silicon clusters structures, electron affinities, and dissociation energies of the Si6Hn/Si6H (n = 3?14) species have been systematically investigated by means of three density functional theory (DFT) methods. The basis set used in this work is of double‐ζ plus polarization quality with additional diffuse s‐ and p‐type functions, denoted DZP++. The geometries are fully optimized with each DFT method independently. Three different types of energy separations presented in this work are the adiabatic electron affinity (EAad), the vertical electron affinity (EAvert), and the vertical detachment energy (VDE). The first Si? H dissociation energies De (Si6Hn→ Si6Hn?1+H) for the neutral Si6Hn and De (Si6H→Si6H+H) for the anionic Si6H species have also been reported. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

13.
Silicon K X-ray emission spectra of Si, SiC, Si3N4, and SiO2 are measured using a wavelength dispersive electron probe X-ray microanalyzer. It is shown that the fine structures in the line shape of the low energy tail of the Kα characteristic X-ray emission spectra resemble those of the K X-ray absorption near edge structure (XANES). XANES spectra of 1 μm2 area can be obtained by this method.  相似文献   

14.
15.
A phenomenological rule based on the charge transfer, exists to predict the ionic/covalent character of the bonds in mixed oxides and is widely used to explain the binding-energy shifts of cations in mixed oxides compared to their simple oxides. Here, we have verified the above rule in the multiferroic BiFeO3 and have applied the same to explain the X-ray photoelectron spectra of BiFeO3 and its parent oxides Fe2O3 and Bi2O3. Ionic charges on Fe, Bi and O were calculated from density functional theory (DFT) within the local density approximation. Measured chemical shifts of O 1s, Fe 2p3/2 and Bi 4f5/2 were compared with the chemical shifts evaluated theoretically considering different contributions such as charge transfer, Madelung potential (initial state effect) and extra-atomic relaxation (final state effect). The chemical shift in the binding energy of O 1s photoelectron was used to build a covalence scale among Fe2O3, Bi2O3 and BiFeO3. The effect of charge transfer on the valence band spectra of BiFeO3 was also investigated.  相似文献   

16.
X-ray photoelectron spectra of the single valence platinum complexes K2[Pt(CN)4] · 3H2O(1),K2[Pt(CN)4]Cl0.3 · n H2O(2) and K2[Pt(CN)4]Cl2 · 3H2O(3) and the mixed valence compound [PtII(C2H5NH2)4]Cl4 · [PtIV (C2H5NH2)4Cl2] · 4H2O(4) have been measured. It is found that one can distinguish clearly between mixed and single valence compounds by electron spectroscopy. The Pt spectrum of (4) is a superposition of a PtII and PtIV spectrum. The chemical shift between (1) and (3) is normal, however (2) shows an anomalous low binding energy for the Pt 4f electrons. The importance of using reliable reference peaks for obtaining absolute binding energies is emphasized.  相似文献   

17.
Genetic algorithm combined with the semi-empirical Hamitonian AM1/PM3 is used to search the low energy isomers of Al n Si m (n = 3, 5, m ≤ 3 and n = 4, m ≤ 4) and the charged clusters with 20 and 28 valence electrons. The candidate structures were optimized by the density functional theory PBE0 and B3LYP models with the triply split basis sets including polarization functions. The electronic structures show that Al–Si binary clusters behave like metal clusters. The molecular orbitals accord with that predicted by the jellium model, and the electron localization function shows the valence electrons are delocalized over the entire clusters. The clusters having 20 and 28 valence electrons exhibit pronounced stabilities and large energy gaps. The 20 valence electrons of Al4Si2 and Al3Si3 +, Al5Si? form closed shells 1S 21P 62S 21D 10. Al4Si4 and Al5Si3 ? have oblate structures and the P, D, F levels spilt considerably in these clusters. The electron density distributions suggest that doping silicon in the aluminum clusters enhances the stability considerably.  相似文献   

18.
The luminescence properties of ytterbium ions in strontium haloborates were studied under optical, X-ray and synchrotron excitation. The coexistence of Yb ions in two valence states (divalent and trivalent) was detected in the Sr2B5O9X:Yb (X=Cl, Br) powder materials prepared in a slightly reducing (H2/N2) or an oxidizing atmosphere. Under optical excitation, the 5d→4f Yb2+ luminescence at 420 nm is observed. Even under X-ray excitation, an emission band with a maximum of about 340nm appears in the spectra. This broadband emission is attributed to charge transfer luminescence of Yb3+. The influence of the structural features of Sr2B5O9X and some preparative conditions of the samples on the luminescent behavior of Yb are discussed.  相似文献   

19.
The intermetallic compounds YbAuxGa2−x (0.26≤x≤1.31) were synthesized by melting of elemental components and subsequent annealing. The crystal structure of YbAu1.04Ga0.96 was investigated using single-crystal X-ray diffraction data: structure type TiNiSi, space group Pnma, a=7.1167(3) Å, b=4.5019(3) Å, c=7.7083(3) Å, RF=0.028 for 27 variables and 441 reflections. At 600 °C this compound is described as partially substituted TiNiSi type and shows a homogeneity range around the equiatomic composition YbAuxGa2−x (0.94≤x≤1.19). For the gallium- (0.26≤x≤0.83) and gold-rich (1.21≤x≤1.31) regions, the KHg2 type of crystal structure (space group Imma) with mixed Au/Ga occupation is found. A temperature-driven phase transition for the composition YbAuGa from ordered TiNiSi to disordered KHg2 structure type is observed at 629 °C. Yb LIII X-ray absorption spectra indicate an intermediate valence of +2.5 for Yb atoms in YbAuGa. For samples deviating from this composition a further reduced valence of Yb is observed. Magnetic susceptibility studies show a non-magnetic 4f14 ground state of Yb atoms with thermal fluctuations towards the 4f13 state.  相似文献   

20.
X-ray photoelectron spectra of metatungstate H2W12O6?40 and of reduced derivatives with 5, 12, and 24 electrons have been recorded. W(4f) signals are consistent with the presence of tetravalent tungsten in the reduced species. In particular the 12e? derivative does not contain WV but WIV and WVI in equal amounts. Valence band spectra show the W(5d) levels near 2 eV in reduced forms, this energy being appreciably lower than in W bronzes and WO2. This can be correlated with the relative inertness of reduced metatungstates towards oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号