首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

A chiral liquid crystal compound exhibiting the ferroelectric smectic C phase and the recently discovered ferroelectric smectic M phase has been studied by measurements of the Goldstone-mode relaxation frequency and dielectric strength, the spontaneous polarization, the tilt angle and the helical pitch. The data allow the determination of the Goldstone-mode rotational viscosity and the pitch controlling elastic constant. The results indicate that the smectic M phase is characterized by a larger molecular order within the smectic layers compared to the smectic C phase confirming the assumption of a tilted hexatic structure for the smectic M phase.  相似文献   

2.
Abstract

The chirality of the constituent molecules in the chiral smectic phase induces a helical structure with a pitch, p 0. Because of the tilt and chirality there is a spontaneous polarization and a bend deformation which act upon the induced helix. The resulting pitch is described as a function of p 0 using the phenomenological theory of a chiral smectic C phase. The pitch, p 0, is then calculated using a molecular theory of the cholesteric phase. The results obtained explain the experimental observations, at least qualitatively.  相似文献   

3.
Abstract

It is possible to untwist reversibly the helical superstructure of elastomers with cholesteric and chiral smectic C?phases by using strain. In that way a cholesteric structure can be transformed into a nematic structure and a chiral smectic C?into a smectic C structure. The latter case is especially interesting because a structure without a macroscopic polarization (chiral smectic C?) is transformed into one with a macroscopic polarization (smectic C like arrangement).  相似文献   

4.
A chiral liquid crystal compound exhibiting the ferroelectric smectic C phase and the recently discovered ferroelectric smectic M phase has been studied by measurements of the Goldstone-mode relaxation frequency and dielectric strength, the spontaneous polarization, the tilt angle and the helical pitch. The data allow the determination of the Goldstone-mode rotational viscosity and the pitch controlling elastic constant. The results indicate that the smectic M phase is characterized by a larger molecular order within the smectic layers compared to the smectic C phase confirming the assumption of a tilted hexatic structure for the smectic M phase.  相似文献   

5.
It is possible to untwist reversibly the helical superstructure of elastomers with cholesteric and chiral smectic C*phases by using strain. In that way a cholesteric structure can be transformed into a nematic structure and a chiral smectic C*into a smectic C structure. The latter case is especially interesting because a structure without a macroscopic polarization (chiral smectic C*) is transformed into one with a macroscopic polarization (smectic C like arrangement).  相似文献   

6.
Several new liquid crystalline materials containing one, two or three chiral centres and having one or two lactate groups in the molecular core have been synthesized. Most of the materials show the blue phase, chiral nematic phase, paraelectric smectic A phase and orthogonal hexatic smectic B phase; some possess the ferroelectric SmC* phase. A study of the mesomorphic properties has been performed using differential scanning calorimetry, optical microscopy and X-ray diffraction. The thickness of the smectic layers and the value of the average distance between the long axes of neighbouring molecules were determined. In the SmC* phase, the temperature dependence of spontaneous polarization, spontaneous tilt angle and helical pitch was measured. The influence of the number of lactate groups on mesogenic behaviour has been established.  相似文献   

7.
The effect of the polarization electric field on helix-unwinding in a thin planar chiral smectic C liquid-crystal cell is studied by using the nematic-like expression for the elastic deformation free-energy density. It is found that the elongation of the helical pitch when the cell thickness decreases is greater when the spontaneous polarization is larger. This is due to the Coulomb repulsion between polarization charges concentrated at ± 2π disclinations.  相似文献   

8.
The effect of the polarization electric field on helix-unwinding in a thin planar chiral smectic C liquid-crystal cell is studied by using the nematic-like expression for the elastic deformation free-energy density. It is found that the elongation of the helical pitch when the cell thickness decreases is greater when the spontaneous polarization is larger. This is due to the Coulomb repulsion between polarization charges concentrated at ± 2π disclinations.  相似文献   

9.
《Liquid crystals》1998,25(1):59-62
The influence of spontaneous polarization on the smectic C*-smectic A* phase transition was studied theoretically by means of Landau theory. calculations that the transition temperature from a non-chiral to chiral smectic C phase is shifted due to the effect of bilinear and biquadratic couplings. A qualitative relationship has also been derived between spontaneous polarization and cell thickness which supports the experimental observations of the increase of spontaneous polarization with the increase of cell thickness for surface-stabilized ferroelectric liquid crystals. It was observed from the theoretical  相似文献   

10.
The synthesis and characterization of five hydrogen-bonded ferroelectric liquid crystal complexes (HBFLCs) prepared from mesogenic p-n-alkoxy benzoic acids and non-mesogenic propionic/butyric acids with different chiral centres are reported. Complementary intermolecular hydrogen bonding is confirmed through IR study. HBFLCs are found to exhibit chiral nematic (N*), smectic C* (SmC*) and smectic G* (monotropic) phases in their cooling profiles during polarizing thermal microscopy and differential scanning calorimetry. Phase coexistence regions are observed above the IN* transition. The chiral nematic to smectic C* transition is found to be of first order. The temperature variation of spontaneous polarization exhibited by these HBFLC complexes in their SmC* phase is presented. The effect of non-covalent interaction imparted by the soft hydrogen bonding in these LC complexes on enhanced or induced thermal stability of tilted LC phases is discussed.  相似文献   

11.
The effect of different types of phase transition on the temperature dependence of the helical pitch and the spontaneous polarization is investigated for mixtures of smectic C liquid crystals and a chiral dopant, based on salicylidenanylene derivatives. The observed phenomena are explained by assuming that the temperature dependence of the pitch is connected with the growth of the disclination loops near the second order phase transition, and that the subsurface electric field can unwind the helix in chiral substances with strong piezoelectric effects which occur for large polarization values.  相似文献   

12.
The effect of different types of phase transition on the temperature dependence of the helical pitch and the spontaneous polarization is investigated for mixtures of smectic C liquid crystals and a chiral dopant, based on salicylidenanylene derivatives. The observed phenomena are explained by assuming that the temperature dependence of the pitch is connected with the growth of the disclination loops near the second order phase transition, and that the subsurface electric field can unwind the helix in chiral substances with strong piezoelectric effects which occur for large polarization values.  相似文献   

13.
Abstract

A novel chiral twin material, (R)-bis[5-octyloxy-2-(4-octyloxyphenoxycarbonyl)phenyl] 3-methyladipate, has been prepared, where two mesogenic parts are connected laterally by a spacer possessing a chiral centre. A weaker helical structure, in particular in the chiral smectic C (S?c) phase, was found to be induced by the laterally-connected twin material than by the analogous terminally-connected twin material. If laterally-connected chiral twin molecules prefer to stay in the smectic layer structure so that the two mesogenic parts exist in the same smectic layer, the twist interaction between adjacent layers cannot be produced by direct correlation of motion and directions of two mesogenic parts. Thus, the helical structure in the S?c phase induced by laterally-connected chiral twin molecules becomes weak. An analogous laterally-branched ‘monomeric’ compound, (S)-5-octyloxy-2-(4-octyloxyphenoxycarbonyl)phenyl 3-methyl-pentanoate, has also been prepared, and the induced helical structures compared.  相似文献   

14.
《Liquid crystals》1998,24(4):599-605
Three series of ferroelectric liquid crystals have been synthesized, having three ester groups in the mesogenic core and one ester group in the chiral chain. The ester groups introduced into the core decrease the temperature of crystallization, which results in a broad temperature range ferroelectric smectic C phase in homologues with a long non-chiral chain. These phases exhibit a high spontaneous polarization and relatively short pitch of the helical structure.  相似文献   

15.
Two homologous series of ferroelectric liquid crystalline compounds with 2‐alkoxypropanoate chiral unit containing biphenyl benzoate core laterally substituted by fluorine and bromine have been synthesized and studied. All compounds possess the ferroelectric smectic C* phase over a broad temperature range. For bromine‐substituted compounds values of spontaneous polarization reach high values up to 250 nC cm?2. The effects of the lateral substitution on the phenyl ring far from the chiral centre by methyl and methoxy groups, fluorine, chlorine and bromine atoms on mesomorphic properties and on values of the spontaneous polarization are discussed.  相似文献   

16.
Fluorinated chiral liquid-crystalline elastomers (LCEs) were graft copolymerized by a one-step hydrosilylation reaction with polymethylhydrogenosiloxane, a fluorinated LC monomer 4-(2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-pentadecafluorooctanoyloxy)phenyl 4-(undec-10-enoyloxy)benzoate (PPUB) and a chiral crosslinking LC monomer (3R,3aR,6S,6aR)-6-(undec-10-enoyloxy)hexahydrofuro[3,2-b]furan-3-yl 4′-(4-(allyloxy)benzoyloxy)biphenyl-4-carboxylate (UHAB). The chemical structure, liquid-crystalline behavior and polarization property were characterized by use of various experimental techniques. The effective crosslink density of the LCEs was characterized by swelling experiments. The thermal analysis results showed that the temperatures at which 5% weight loss occurred were greater than 250 °C for all the LCEs, and the residue weight nearby 600 °C increase with increasing chiral crosslinking components in the polymer systems. All the samples showed chiral smectic C mesophase when they were heated. The glass transition temperature and mesophase-isotropic phase transition temperature of fluorinated elastomers increased slightly with increase of chiral crosslinking mesogens in the polymer systems, but the enthalpy changes of mesophase-isotropic phase transition decreased slightly. In XRD curves, all the samples exhibited strong sharp reflections at small angles suggesting smectic layered packing arrangement. These fluorinated chiral LCEs showed 0.1–0.2 μC/cm2 of spontaneous polarization with increasing chiral crosslinking component.  相似文献   

17.
The chiral ferroelectric smectic C (SmC*) phase, characterized by a helical superstructure, has been well exploited in developing high‐resolution microdisplays that have been effectively employed in the fabrication of a wide varieties of portable devices. Although, an overwhelming number of optically active (chiral) liquid crystals (LCs) exhibiting a SmC* phase have been designed and synthesized, the search for new systems continues so as to realize mesogens capable of meeting technical necessities and specifications for their end‐use. In continuation of our research work in this direction, herein we report the design, synthesis, and thermal behavior of twenty new optically active, three‐ring calamitic LCs belonging to four series. The first two series comprise five pairs of enantiomeric Schiff bases whereas the other two series are composed of five pairs of enantiomeric salicylaldimines. In each pair of optical isomers, the configuration of a chiral center in one stereoisomer is opposite to that of the analogous center in the other isomer as they are derived from (3 S)‐3,7‐dimethyloctyloxy and (3 R)‐3,7‐dimethyloctyloxy tails. To probe the structure–property correlations in each series, the length of the n‐alkoxy tail situated at the other end of the mesogens has been varied from n‐octyloxy to n‐dodecyloxy. The measurement of optical activity of these chiral mesogens was carried out by recording their specific rotations. As expected, enantiomers rotate plane polarized light in the opposite direction but by the same magnitude. The thermal behavior of the compounds was established by using a combination of optical polarizing microscopy, differential scanning calorimetry, and powder X‐ray diffraction. These complementary techniques demonstrate the existence of the expected, thermodynamically stable, chiral smectic C (SmC*) LC phase besides blue phase I/II (BPI or BPII) and chiral nematic (N*) phase. However, as noted in our previous analogous study, the vast majority of the Schiff bases show an additional metastable, unfamiliar smectic (SmX) phase just below the SmC* phase. Notably, the SmC* phase persists over the temperature range ≈80–115 °C. Two mesogens chosen each from Schiff bases and salicylaldimines were investigated for their electrical switching behavior. The study reveals the ferroelectric switching characteristics of the SmC* phase featuring the spontaneous polarization (PS) in the range 69–96 nC cm?2. The helical twist sense of the SmC* phase as well as the N* phase formed by a pair of enantiomeric Schiff bases and salicylaldimines has been established with the help of circular dichroism (CD) spectroscopic technique. As expected, the SmC* and the N* phase of a pair of enantiomers showed mirror image CD signals. Most importantly, the reversal of helical handedness from left to right and vice versa has been evidenced during the N* to SmC* phase transition, implying that the screw sense of the helical array of the N* phase and the SmC* phase of an enantiomer is opposite.  相似文献   

18.
A homologous series of chiral 4-(3-methylpentyl)benzenethio-4′-n-alkoxy-benzoates has been studied. These thioesters display a ferroelectric, chiral smectic C phase in addition to cholesteric and smectic A phases. A comparison is made between the thioester series and a phenylbenzoate, having the same molecular end group. The effect of the different central linkage on the transition temperature, and on the physical and ferroelectric liquid crystal (FLC) properties has been investigated. Several mixtures, containing these thioester components, were calculated and formulated to obtain room temperature chiral smectic C phases. Spontaneous polarization Ps values and electro-optical response times are correlated with chemical structures. Although these thioesters have very low P s values, they are useful components for FLC mixtures because of their convenient chiral smectic C temperature ranges and their low viscosities.  相似文献   

19.
The chirality of the constituent molecules in the chiral smectic phase induces a helical structure with a pitch, p0. Because of the tilt and chirality there is a spontaneous polarization and a bend deformation which act upon the induced helix. The resulting pitch is described as a function of p0 using the phenomenological theory of a chiral smectic C phase. The pitch, p0, is then calculated using a molecular theory of the cholesteric phase. The results obtained explain the experimental observations, at least qualitatively.  相似文献   

20.
《Liquid crystals》1998,24(5):719-726
A series of semi-perfluorinated ferroelectric liquid crystals, 2-[4-(2-fluoro-octyloxy)phenyl]- 5-(omega-n-perfluoroalkylalkyloxy)pyrimidines were prepared and their physical properties evaluated. All of the fluorinated phenylpyrimidines exhibited a chiral smectic C phase enantiotropically. The results showed that high fluorination extent favours the tilted chiral smectic C phase. Also, highly fluorinated compounds exhibited a large cone tilt angle and large spontaneous polarization. However, the response became slow as the fluorination extent increased. Although the compounds showed a large spontaneous polarization in the pure state, their spontaneous polarization power as chiral dopants was so small that very little spontaneous polarization could be measured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号