首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of nonlinear gradient terms on the pulsating, erupting and creeping solitons, respectively, of the cubic–quintic complex Ginzburg–Landau equation is investigated. It is found that the nonlinear gradient terms result in dramatic changes in the soliton behavior. They eliminate the periodicity of the pulsating and erupting solitons and transform them into fixed-shape solitons. This is important for potential use, such as to realize experimentally the undistorted transmission of femtosecond pulses in optical fibers. However, the nonlinear gradient terms cause the creeping soliton to breathe periodically at different frequencies on one side and spread rapidly on the other side. PACS 47.20.Ky; 05.70.Ln; 03.40.Gc; 42.65.Tg  相似文献   

2.
We consider the problem of the driven harmonic oscillator in the probability representation of quantum mechanics, where the oscillator states are described by fair nonnegative probability distributions of position measured in rotated and squeezed reference frames in the system??s phase space. For some specific oscillator states like coherent states and nth excited states, the tomographic-probability distributions (called the state tomograms) are found in an explicit form. The evolution equation for the tomograms is discussed for the classical and quantum driven oscillators, and the tomographic propagator for this equation is studied.  相似文献   

3.
Zene Horii   《Physica A》2005,350(2-4):349-378
To establish mass transport theory on nonlinear lattices, we formulate the Korteweg–deVries (KdV) equation and the Burgers equation using the flow variable representation so as to facilitate comparison with the Boltzmann equation and with the Cahn–Hilliard equation in classical statistical mechanics. We also study Toda lattice microdynamics using the Flaschka representation, and compare with the Liouville equation. Like the linear diffusion equation, the Boltzmann equation and the Liouville equation are to be solved for a distribution function, which is intrinsically probabilistic. Transport theory in linear systems is governed by the isotropic motions of the kinetic equations. In contrast, the KdV perturbation equation derived from the Toda lattice microdynamics expresses hydrodynamic mass transport. The KdV equation in hydrodynamics and the Burgers equation in thermodynamics do not involve a probability distribution function. The nonlinear lattices do not retain isotropy of the mass transport equations. In consequence, it is proposed that in the presence of hydrodynamic flows to the left, KdV wave propagation proceeds to the right. This basic property of the KdV system is extended to thermodynamics in the Burgers system. These features arise because linear systems are driven towards an equilibrium by molecular collisions, whereas the inhomogeneities of the nonlinear lattices are generated by the potential energy of interaction. Diffusion as expressed by the Burgers equation is governed not only by a chemical potential, but also by the Toda lattice potential energy.  相似文献   

4.
We consider the problem of energy transport in a Davydov model along an anharmonic crystal medium obeying quartic longitudinal interactions corresponding to rigid interacting particles. The Zabusky and Kruskal unidirectional continuum limit of the original discrete equations reduces, in the long wave approximation, to a coupled system between the linear Schrödinger (LS) equation and the modified Korteweg–de Vries (mKdV) equation. Single- and two-hump bright soliton solutions for this LS–mKdV system are predicted to exist by variational means and numerically confirmed. The one-hump bright solitons are found to be the anharmonic supersonic analogue of the Davydov's solitons while the two-hump (in both components) bright solitons are found to be a novel type of soliton consisting of a two-soliton solution of mKdV trapped by the wave function associated to the LS equation. This two-hump soliton solution, as a two component solution, represents a new class of polaron solution to be contrasted with the two-soliton interaction phenomena from soliton theory, as revealed by a variational approach and direct numerical results for the two-soliton solution.  相似文献   

5.
An averaged variational principle is applied to analyze the nonlinear effect of transverse perturbations (including diffraction) on quasi-one-dimensional soliton propagation governed by various wave equations. It is shown that parameters of the spatiotemporal solitons described by the cubic Schrödinger equation and the Yajima-Oikawa model of interaction between long-and short-wavelength waves satisfy the spatial quintic nonlinear Schrödinger equation for a complex-valued function composed of the amplitude and eikonal of the soliton. Three-dimensional solutions are found for two-component “bullets” having long-and short-wavelength components. Vortex and hole-vortex structures are found for envelope solitons and for two-component solitons in the regime of resonant long/short-wave coupling. Weakly nonlinear behavior of transverse perturbations of one-dimensional soliton solutions in a self-defocusing medium is described by the Kadomtsev-Petviashvili equation. The corresponding rationally localized “lump” solutions can be considered as secondary solitons propagating along the phase fronts of the primary solitons. This conclusion holds for primary solitons described by a broad class of nonlinear wave equations.  相似文献   

6.
The results of a numerical simulation of the interaction and generation of solitons in nonlinear integrable systems which admit the existence of very-large-amplitude solitons are reported. The nonlinear integrable system chosen for study is the Gardner equation, particular examples of which are the Korteweg-de Vries equation (for quadratic nonlinearity) and a modified Korteweg-de Vries equation (for cubic nonlinearity).It is shown that during the evolution process solitons of opposite polarity appear on the crest of the maximum soliton. Pis’ma Zh. éksp. Teor. Fiz. 67, No. 9, 628–633 (10 May 1998)  相似文献   

7.
Cylindrical and spherical Gardner solitons (GSs) and double layers (DLs) in a two-electron-temperature plasma system (containing cold electrons, hot electrons obeying a Boltzmann distribution, and hot ions obeying a nonthermal distribution) are studied by employing the reductive perturbation method. The modified Gardner equation describing the nonlinear propagation of the electron-acoustic (EA) waves is derived, and its nonplanar GS and DL solutions are numerically analyzed. The parametric regimes for the existence of GSs, which are associated with both positive and negative potential, and DLs which are associated with positive potential, are obtained. The basic features of nonplanar EA GSs, and DLs, which are found to be different from planar ones, are also identified. The implications of our results in space and laboratory plasmas are briefly discussed.  相似文献   

8.
9.
A multiple scales technique is employed to solve the fluid-Maxwell equations describing a weakly nonlinear circularly polarized electromagnetic pulse in magnetized plasma. A nonlinear Schrödinger-type (NLS) equation is shown to govern the amplitude of the vector potential. The conditions for modulational instability and for the existence of various types of localized envelope modes are investigated in terms of relevant parameters. Right-hand circularly polarized (RCP) waves are shown to be modulationally unstable regardless of the value of the ambient magnetic field and propagate as bright-type solitons. The same is true for left-hand circularly polarized (LCP) waves in a weakly to moderately magnetized plasma. In other parameter regions, LCP waves are stable in strongly magnetized plasmas and may propagate as dark-type solitons (electric field holes). The evolution of envelope solitons is analyzed numerically, and it is shown that solitons propagate in magnetized plasma without any essential change in amplitude and shape.  相似文献   

10.
11.
Considering the ultrashort optical soliton propagation in the non-Kerr media, the cubic-quintic nonlinear Schrödinger equation with Raman effect is studied through the dependent variable transformation and Hirota method. Based on symbolic computation, the bilinear form, the explicit one- and two-soliton solutions for the equation are presented. The constraint parametric condition for the existence of soliton solutions is also derived. Propagation characteristics and interaction behaviors of the solitons are graphically shown and discussed: (1) Overtaking elastic interactions of the two solitons; (2) periodic attraction and repulsion of the bounded states of two solitons; (3) propagation in parallel of the two solitons.  相似文献   

12.
A master equation for the Kardar–Parisi–Zhang (KPZ) equation in 2+1 dimensions is developed. In the fully nonlinear regime we determine the finite time scale of the singularity formation in terms of the characteristics of forcing. The exact probability density function of the one point height field is obtained correspondingly.  相似文献   

13.
Within the framework of the third-order approximation of the nonlinear wave dispersion theory, we find new classes of short scalar and vector solitons of lengths about several wavelengths. Short scalar solitons are found within the framework of a third-order nonlinear Schrödinger equation (NSE-3) including both the nonlinear dispersion terms and the third-order linear dispersion term. The interaction of such solitons is studied, and the soliton stability is proved. Short vector solitons are found within the framework of a coupled third-order nonlinear Schröodinger equation (CNSE-3). Interaction and stability of such solitons are studied.  相似文献   

14.
The two-component vector nonlinear Schrödinger equation, with mixed signs of the nonlinear coefficients, is considered. This equation is integrable by the inverse scattering transform method. The evolution of a single pulse and interaction of pulses are studied. It is shown that the dynamics of a single pulse is reduced to the scalar nonlinear Schrödinger equation of focusing or defocusing type, depending on the initial parameters. It is found that the interaction of pulses results in the appearance of additional solitons and bound states of several solitons. The asymptotic field profile in the non-soliton regime is also obtained.  相似文献   

15.
16.
Interaction properties of complex solitons are studied for the two U(1)-invariant integrable generalizations of the modified Korteweg-de Vries (mKdV) equation, given by the Hirota equation and the Sasa-Satsuma equation, which share the same traveling wave (single-soliton) solution having a sech profile characterized by a constant speed and a constant phase angle. For both equations, nonlinear interactions in which a fast soliton collides with a slow soliton are shown to be described by 2-soliton solutions that can have three different types of interaction profile, depending on the speed ratio and the relative phase angle of the individual solitons. In all cases, the shapes and speeds of the solitons are found to be preserved apart from a shift in position such that their center of momentum moves at a constant speed. Moreover, for the Hirota equation, the phase angles of the fast and slow solitons are found to remain unchanged, while, for the Sasa-Satsuma equation, the phase angles are shown to undergo a shift such that the relative phase between the fast and slow solitons changes sign.  相似文献   

17.
The N-fold Darboux transformation(DT) T_n~([N]) of the nonlinear self-dual network equation is given in terms of the determinant representation. The elements in determinants are composed of the eigenvalues λ_j(j = 1, 2..., N)and the corresponding eigenfunctions of the associated Lax equation. Using this representation, the N-soliton solutions of the nonlinear self-dual network equation are given from the zero "seed" solution by the N-fold DT. A general form of the N-degenerate soliton is constructed from the determinants of N-soliton by a special limit λ_j →λ_1 and by using the higher-order Taylor expansion. For 2-degenerate and 3-degenerate solitons, approximate orbits are given analytically,which provide excellent fit of exact trajectories. These orbits have a time-dependent "phase shift", namely ln(t~2).  相似文献   

18.
The relation between the density matrix obeying the von Neumann equation and the wave function obeying the Schrödinger equation is discussed in connection with the superposition principle of quantum states. The definition of the ray-addition law is given, and its relation to the addition law of vectors in the Hilbert space of states and the role of a constant phase factor of the wave function is elucidated. The superposition law of density matrices, Wigner functions, and tomographic probabilities describing quantum states in the probability representation of quantum mechanics is studied. Examples of spin-1/2 and Schrödinger-cat states of the harmonic oscillator are discussed. The connection of the addition law with the entanglement problem is considered.  相似文献   

19.
The interaction and generation of solitons in nonlinear integrable systems which allow the existence of a soliton of limiting amplitude are considered. The integrable system considered is the Gardner equation, which includes the Korteweg-de Vries equation (for quadratic nonlinearity) and the modified Korteweg-de Vries equation (for cubic nonlinearity) as special cases. A two-soliton solution of the Gardner equation is derived, and a criterion, which distinguishes between different scenarios for the interaction of two solitons, is determined. The evolution of an initial pulsed disturbance is considered. It is shown, in particular, that solitons of opposite polarity appear during such evolution on the crest of a limiting soliton. Zh. éksp. Teor. Fiz. 116, 318–335 (July 1999)  相似文献   

20.
The motion of solitons in a medium whose parameters vary randomly but so that a stochastic nonlinear equation remains fully integrable is considered. It is found that, in this case, the position of the soliton maximum executes Brownian motion, while its phase becomes random.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 4, pp. 91–97, April, 1987.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号