首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Following the photodissociation of o-fluorotoluene [o-C(6)H(4)(CH(3))F] at 193 nm, rotationally resolved emission spectra of HF(1< or =v< or =4) in the spectral region of 2800-4000 cm(-1) are detected with a step-scan Fourier transform spectrometer. HF(v< or =4) shows nearly Boltzmann-type rotational distributions corresponding to a temperature approximately 1080 K; a short extrapolation from data in the period of 0.5-4.5 mus leads to a nascent rotational temperature of 1130+/-100 K with an average rotational energy of 9+/-2 kJ mol(-1). The observed vibrational distribution of (v=1):(v=2):(v=3)=67.6: 23.2: 9.2 corresponds to a vibrational temperature of 5330+/-270 K. An average vibrational energy of 25+/-(3) (12) kJ mol(-1) is derived based on the observed population of HF(1< or =v< or =3) and estimates of the population of HF (v=0 and 4) by extrapolation. Experiments performed on p-fluorotoluene [p-C(6)H(4)(CH(3))F] yielded similar results with an average rotational energy of 9+/-2 kJ mol(-1) and vibrational energy of 26+/-(3) (12) kJ mol(-1) for HF. The observed distributions of internal energy of HF in both cases are consistent with that expected for four-center elimination. A modified impulse model taking into account geometries and displacement vectors of transition states during bond breaking predicts satisfactorily the rotational excitation of HF. An observed vibrational energy of HF produced from fluorotoluene slightly smaller than that from fluorobenzene might indicate the involvement of seven-membered-ring isomers upon photolysis.  相似文献   

2.
Quantum chemical methods at the Gaussian-2 and -3 levels of theory have been used to investigate the reactions between H(2)S, SO(2), and S(2)O such as might occur in the front-end furnace of the Claus process. The direct reaction between H(2)S and SO(2) occurs via a 5-centered transition state with an initial barrier of approximately 135 kJ mol(-1) and an overall barrier of approximately 153 kJ mol(-1) to produce S(2)O and H(2)O. We indicate approximate values here because there are a number of isomers in the reaction pathway that have barriers slightly different from those quoted. The presence of a water molecule lowers this by approximately 60 kJ mol(-1), but the van der Waals complex required for catalysis by water is thermodynamically unfavorable under the conditions in the Claus reactor. The direct reaction between H(2)S and S(2)O can occur via two possible pathways; the analogous reaction to H(2)S + SO(2) has an initial barrier of approximately 117 kJ mol(-1) and an overall barrier of approximately 126 kJ mol(-1) producing S(3) and H(2)O, and a pathway with a 6-centred transition state has a barrier of approximately 111 kJ mol(-1), producing HSSSOH. Rate constants, including a QRRK analysis of intermediate stabilization, are reported for the kinetic scheme proposed here.  相似文献   

3.
The potential energy hypersurfaces (PESs) of heptasulfur (S7) and of [LiS7]+ have been investigated by ab initio molecular orbital calculations at the G3X(MP2) level of theory. Besides the chair-like seven-membered ring (1a) as the global minimum structure, eight local minimum structures and one transition state have been located on the PES of S7. The barrier for pseudorotation of 1a is only 5.6 kJ mol(-1). The boat-like S7 ring (1b) is 12.1 kJ mol(-1) less stable than 1a, followed by three isomers of connectivity S6=S and four open-chain isomers. On the basis of multireference calculations at the MRCI(4,4)+Q/6-311G(d) level, the most stable open-chain form of S7 is a triplet of relative energy 133.1 kJ mol(-1). Thus, the reaction energy (deltaE0) for the ring opening of 1a is 133.1 kJ mol(-1), halfway between those of the highly symmetrical rings S6 and S8. Because of their strong multireference characters, the stabilities of the biradicalic singlet chains are significantly overestimated by the single-reference-based G3X(MP2) method. The calculated vibrational spectrum of 1a is in good agreement with experimental data. The various isomers of S7 form stable complexes with Li+ with coordination numbers of 1-4 for the metal atom and binding energies in the range of -93.8 to -165.7 kJ mol(-1). A total of 15 isomeric complexes have been located, with 13 of them containing cyclic ligands. The global minimum structure (2a) is composed of 1a, with the Li+ cation linked to the four negatively charged sulfur atoms (symmetry C(s)). The corresponding complex 2c containing the ligand 1b is by 23.4 kJ mol(-1) less stable than 2a, and a bicyclic crown-shaped LiS7 cation (2e) is by 34.9 kJ mol(-1) less stable than 2a. Even less stable are four complexes with the branched S6=S ligand. SS bond activation by polarization of the valence electrons takes place on coordination of Li+ to cyclo-S7 (1a).  相似文献   

4.
Guided ion beam tandem mass spectrometry techniques are used to examine the competing product channels in the reaction of Cl(-) with CH(3)F in the center-of-mass collision energy range 0.05-27 eV. Four anionic reaction products are detected: F(-), CH(2)Cl(-), FCl(-), and CHCl(-). The endothermic S(N)2 reaction Cl(-) + CH(3)F --> CH(3)Cl + F(-) has an energy threshold of E(0) = 181 +/- 14 kJ/mol, exhibiting a 52 +/- 16 kJ/mol effective barrier in excess of the reaction endothermicity. The potential energy of the S(N)2 transition state is well below the energy of the products. Dynamical impedances to the activation of the S(N)2 reaction are discussed, including angular momentum constraints, orientational effects, and the inefficiency of translational energy in promoting the reaction. The fluorine abstraction reaction to form CH(3) + FCl(-) exhibits a 146 +/- 33 kJ/mol effective barrier above the reaction endothermicity. Direct proton transfer to form HCl is highly inefficient, but HF elimination is observed above 268 +/- 95 kJ/mol. Potential energy surfaces for the reactions are calculated using the CCSD(T)/aug-cc-pVDZ and HF/6-31+G(d) methods and used to interpret the dynamics.  相似文献   

5.
Accurate calculations of the low-lying singlet and triplet electronic states of thiozone, S(3), have been carried out using large multireference configuration interaction wave functions. Cuts of the full potential energy surfaces along the stretching and bending coordinates have been presented, together with the vertical excitation spectra. The strong experimentally observed absorption around 395 nm is assigned to the 1 (1)B(2) state, which correlates to ground state products. Absorption at wavelengths shorter than 260 nm is predicted to lead to singlet excited state products, S(2) (a (1)Delta(g))+S((1)D). The spectroscopic properties of the X (3)Sigma(g) (-), a (1)Delta(g), and b (1)Sigma(g) (+) electronic states of the S(2) radical have also been accurately characterized in this work. The investigations of the low-lying electronic states were accompanied by accurate ground state coupled cluster calculations of the thermochemistry of both S(2) and S(3) using large correlation consistent basis sets with corrections for core-valence correlation, scalar relativity, and atomic spin-orbit effects. Resulting values for D(0)(S(2)+S) and SigmaD(0) for S(3) are predicted to be 61.3 and 162.7 kcal/mol, respectively, with conservative uncertainties of +/-1 kcal/mol. Analogous calculations predict the C(2v)-D(3h) (open-cyclic) isomerization energy of S(3) to be 4.4+/-0.5 kcal/mol.  相似文献   

6.
The infrared spectra (3200-400 cm(-1)) of krypton solutions of 1,3-difluoropropane, FCH2CH2CH2F, at variable temperatures (-105 to -150 degrees C) have been recorded. Additionally, the infrared spectra (3200-50 cm(-1)) of the gas and solid have been recorded as well as the Raman spectrum of the liquid. From a comparison of the spectra of the fluid phases with that in the solid, all of the fundamental vibrations of the C2 conformer (gauche-gauche) where the first gauche indicates the form for one of the CH2F groups and the second gauche the other CH2F, and many of those for the C1 form (trans-gauche) have been identified. Tentative assignments have been made for a few of the fundamentals of the other two conformers, i.e. C2v (trans-trans) and Cs (gauche-gauche'). By utilizing six pairs of fundamentals for these two conformers in the krypton solutions, an enthalpy difference of 277 +/- 28 cm(-1) (3.31 +/- 0.33 kJ mol(-1)) has been obtained for the C2 versus C1 conformer with the C2 conformer the more stable form. For the C2v conformer, the enthalpy difference has been determined to be 716 +/- 72 cm(-1) (8.57 +/- 0.86 kJ mol(-1)) and for the Cs form 971 +/- 115 cm(-1) (11.6 +/- 1.4 kJ mol(-1)). It is estimated that there is 64 +/- 3% of the C2 form, 34 +/-3% of the C1 form, 1% of the C2v form and 0.6% of the Cs conformer present at ambient temperature. Equilibrium geometries and total energies of the four stable conformers have been determined from ab initio calculations with full electron correlation by the perturbation method to second order as well as by hybrid density functional theory calculations with the B3LYP method using a number of basis sets. The MP2 calculations predict the C1 conformer stability to be slightly higher than the experimentally determined value whereas for the C2v and Cs conformers the predicted energy difference is much larger than the experimental value. The B3LYP calculations predict a better energy difference for both the C1 and C2v as well as for the Cs conformers than the MP2 values. A complete vibrational assignment is proposed for the C2 conformer and many of the fundamentals have been identified for the C1 form based on the force constants, relative intensities and rotational-vibrational band contours obtained from the predicted equilibrium geometry parameters. By combining previously reported rotational constants for the C2 and C1 conformers with ab initio MP2/6-311 + G(d, p) predicted parameters, adjusted r0 parameters have been obtained for both conformers. Comparisons are made with the parameters obtained for some other molecules containing the FCH2 group. The spectroscopic and theoretical results are compared to the corresponding properties for some similar molecules.  相似文献   

7.
Following photodissociation of fluorobenzene (C(6)H(5)F) at 193 nm, rotationally resolved emission spectra of HF(1相似文献   

8.
The dynamics of photodissociation of acetoxime at 193 nm, leading to the formation of (CH3)2C=N and OH fragments, has been investigated. The nascent OH radicals, which are both rotationally and vibrationally excited, were probed by laser photolysis-laser induced fluorescence technique. OH fragments in both v" = 1 and v" = 0 vibrational states were detected with a ratio of population in the higher to lower level of 0.07+/-0.01. The rotational temperatures of v" = 0 and 1 levels of OH radicals are 2650+/-150 K and 1290+/-20 K, respectively. More than 30% of the available energy, i.e., 115+/-21 kJ mol(-1) is partitioned into the relative translational energy of the fragments. The results of excited electronic state and transition state calculations at the configuration interaction with single electronic excitation level suggest that the dissociation takes place with an exit barrier of approximately 126 kJ mol(-1) at the triplet state (T2) potential energy surface, formed by internal conversions/intersystem crossing from the initially populated S2 state. Using the calculated transition state geometry and its energy, the observed energy distribution pattern can be reproduced by the hybrid model within experimental uncertainties. The presence of an exit barrier is further supported by the observation of N-OH dissociation upon 248 nm excitation, where the relative translational energy of the fragments is found to be approximately 96 kJ mol(-1). The photodissociation dynamics of acetoxime is compared with C-OH dissociation in enols and carboxylic acid and N-OH dissociation in nitrous acid. The observed emission (lambda(max)=430 nm) and the N-OH dissociation dynamics indicate crossing of the initially populated state to an emissive state of acetoxime, which is different from the dissociative state.  相似文献   

9.
The infrared (3100-40 cm(-1)) spectra of gaseous and solid and Raman (3200-20 cm(-1)) spectra of liquid with qualitative depolarization values and solid n-propyltrifluorosilane, CH(3)CH(2)CH(2)SiF(3), have been recorded. Additionally the infrared spectra of the sample in nitrogen and argon matrices have been recorded. Both the anti and gauche conformers have been identified in the fluid phases but only the anti conformer remains in the solid. Variable temperature (-105 to -150 degrees C) studies of the infrared spectra of the sample dissolved in liquid krypton have been recorded and the enthalpy difference has been determined to be 135+/-14 cm(-1) (1.62+/-0.17 kJ mol(-1)) with the anti conformer the more stable form. At ambient temperature it is estimated that there is 51+/-2% of the gauche conformer present. Also the enthalpy difference in the liquid was obtained from variable temperature studies of the Raman spectra and from three conformer pairs an average value of 179+/-18 cm(-1) (2.14+/-0.22 kJ mol(-1)) was obtained again with the anti form the more stable conformer. Relatively complete vibrational assignments are proposed for both conformers based on the relative infrared and Raman spectral intensities, infrared band contours, depolarization ratios which are supported by normal coordinate calculations. The geometrical parameters, harmonic force constants, vibrational frequencies, infrared intensities, Raman activities, depolarization ratios, and energy differences have been obtained for the anti and gauche conformers from ab initio MP2/6-31G(d) calculations. Structural parameters and energy differences have also been obtained utilizing the larger 6-311+G(d, p) and 6-311+G(2d, 2p) basis sets. By utilizing the previously reported microwave rotational constants for five isotopomers of CH(3)SiF(3) along with ab initio predicted structural values, r(0) parameters have been obtained for methyltrifluorosilane. Similarly, from the ab initio predicted parameters "adjusted r(0)" parameters have been estimated for both conformers of n-propyltrifluorosilane. The results are discussed and compared with those obtained for some similar molecules.  相似文献   

10.
Rotationally resolved infrared emission spectra of HCl(v=1-3) in the reaction of Cl+CH3SH, initiated with radiation from a laser at 308 nm, are detected with a step-scan Fourier-transform spectrometer. Observed rotational temperature of HCl(v=1-3) decreases with duration of reaction due to collisional quenching; a short extrapolation to time zero based on data in the range 0.25-4.25 micros yields a nascent rotational temperature of 1150+/-80 K. The rotational energy averaged for HCl(v=1-3) is 8.2+/-0.9 kJ mol(-1), yielding a fraction of available energy going into rotation of HCl, fr=0.10+/-0.01, nearly identical to that of the reaction Cl+H(2)S. Observed temporal profiles of the vibrational population of HCl(v=1-3) are fitted with a kinetic model of formation and quenching of HCl(v=1-3) to yield a branching ratio (68+/-5):(25+/-4):(7+/-1) for formation of HCl(v=1):(v=2):(v=3) from the title reaction and its thermal rate coefficient k(2a)=(2.9+/-0.7)x10(-10) cm(3) molecule(-1) s(-1). Considering possible estimates of the vibrational population of HCl(v=0) based on various surprisal analyses, we report an average vibrational energy 36+/-6 kJ mol(-1) for HCl. The fraction of available energy going into vibration of HCl is f(v)=0.45+/-0.08, significantly greater than a value fv=0.33+/-0.06 determined previously for Cl+H2S. Reaction dynamics of Cl+H(2)S and Cl+CH3SH are compared; the adduct CH3S(Cl)H is likely more transitory than the adduct H(2)SCl.  相似文献   

11.
S4(AsF6)2.AsF3 was prepared by the reaction of sulfur with arsenic pentafluroide in liquid AsF3 (quantitatively) and in anhydrous HF in the presence of trace amounts of bromine. A single-crystal X-ray structure of the compound has been determined: monoclinic, space group P2(1)/c, Z = 4, a = 7.886(1) A, b = 9.261(2) A, c = 19.191(3) A, beta = 92.82(1) degrees, V = 1399.9(4) A3, T = 293 K, R1 = 0.052 for 1563 reflections (I > 2 sigma (I) 1580 total and 235 parameters). We report a term-by-term calculation of the lattice potential energy of this salt and also use our generalized equation, which estimates lattice energies to assist in probing the homopolyatomic cation thermochemistry in the solid and the gaseous states. We find S4(AsF6)2.AsF3 to be more stable (delta fH degree [S4(AsF6)2.AsF3,c] approximately -4050 +/- 105 kJ/mol) than either the unsolvated S4(AsF6)2 (delta fH degree [S4(AsF6)2,c] approximately -3104 +/- 117 kJ/mol) by 144 kJ/mol or two moles of S2AsF6 (c) and AsF3 (1) by 362 kJ/mol. The greater stability of the S(4)2+ salt arises because of the greater lattice potential energy of the 1:2 solvated salt (1734 kJ/mol) relative to twice that of the 1:1 salt (2 x 541 = 1082 kJ/mol). The relative lattice stabilization enthalpies of M(4)2+ ions relative to two M2+ ions (i.e., in M4(AsF6)2 (c) with respect to two M2AsF6 (c) (M = S, Se, and Te)) are found to be 218, 289, and 365 kJ/mol, respectively. Evaluation of the thermodynamic data implies that appropriate presently available anions are unlikely to stabilize M2+ in the solid phase. A revised value for delta fH degree [Se4(AsF6)2,c] = -3182 +/- 106 kJ/mol is proposed based on estimates of the lattice energy of Se4(AsF6)2 (c) and a previously calculated gasphase dimerization energy of 2Se2+ to Se(4)2+.  相似文献   

12.
Matrix-isolation experiments were performed to study the interaction between Ga atoms and N2 by using Raman and UV/Vis spectroscopies for detection and analysis. It was revealed that a weak complex is formed, for which resonance Raman spectra were obtained. Several overtones were sighted, allowing a rough estimate of the Ga-N2 fragmentation energy to be made (approximately 19 kJ mol(-1)). The excitation profile obtained from the spectra at different laser wavelengths agrees with the UV/Vis spectrum and shows that the complex exhibits an electronic transition at around 410 nm. At the Ga atom, this transition can be described as a 2S<--2P or 2D<--2P excitation, which is red-shifted from its position for free Ga atoms (approximately 340 nm and 270 nm for 2S<--2P and 2D<--2P, respectively) as a result of N2 complexation. The effect of complexation involves, therefore, only slight stabilization of the 2P ground state but relatively strong stabilization of the excited (2)S state. Accordingly, for the Ga atom in its excited 2S state, the Ga-N2 bond energy can be estimated to be around 79 kJ mol(-1).  相似文献   

13.
To understand the influence of the methyl group in the stability and conformational behavior of the piperidine ring, the standard (p0= 0.1 MPa) molar enthalpies of formation of 1-methylpiperidine, 3-methylpiperidine, 4-methylpiperidine, 2,6-dimethylpiperidine, and 3,5-dimethylpiperidine, both in the liquid and in the gaseous states, were determined at the temperature of 298.15 K. The numerical values of the enthalpies of formation in the liquid and in the gaseous state are, respectively, -(95.9 +/- 1.6) and -(59.1 +/- 1.7) kJ.mol(-1) for 1-methylpiperidine; -(123.6 +/- 1.4) and -(79.2 +/- 1.6) kJ.mol(-1) for 3-methylpiperidine; -(123.5 +/- 1.5) and -(82.9 +/- 1.7) kJ.mol(-1) for 4-methylpiperidine; -(153.6 +/- 2.1) and -(111.2 +/- 2.2) kJ.mol(-1) for 2,6-dimethylpiperidine; and -(155.0 +/- 1.7) and -(105.9 +/- 1.8) kJ.mol(-1) for 3,5-dimethylpiperidine. In addition, and to be compared with the experimental results, theoretical calculations were carried out considering different ab initio and density functional theory based methods. The standard molar enthalpies of formation of the four isomers of methylpiperidine and of the 12 isomers of dimethylpiperidine have been computed. The G3MP2B3-derived numbers are in excellent agreement with experimental data, except in the case of 2,6-dimethylpiperidine for which a deviation of 9 kJ.mol(-1) was found. Surprisingly, the DFT methods fail in the prediction of these properties with the exception of the most approximated SVWN functional.  相似文献   

14.
The four stereoisomers of chalcogran 1 ((2RS,SRS)-2-ethyl-1,6-di-oxaspiro[4.4]nonane), the principal component of the aggregation pheromone of the bark beetle pityogenes chalcographus, are prone to interconversion at the spiro center (C5). During diastereo- and enantioselective dynamic gas chromatography (DGC), epimerization of 1 gives rise to two independent interconversion peak profiles, each featuring a plateau between the peaks of the interconverting epimers. To determine the rate constants of epimerization by dynamic gas chromatography (DGC), equations to simulate the complex elution profiles were derived, using the theoretical plate model and the stochastic model of the chromatographic process. The Eyring activation parameters of the experimental interconversion profiles, between 70 and 120 C in the presence of the chiral stationary phase (CSP) Chirasil-beta-Dex, were then determined by computer-aided simulation with the aid of the new program Chrom-Win: (2R,5R)-1: deltaG(++) (298.15 K) = 108.0 +/-0.5 kJ mol(-1), deltaH(++) = 47.1+/-0.2 kJ mol(-1), deltaS(++) = -204+/-6 JK(-1) mol(-1): (2R,5S)-1: deltaG(++) (298.15 K) = 108.5+/-0.5 kJ mol(-1), deltaH(++) = 45.8+/-0.2 kJ mol(-1), deltaS(++) = -210 +/-6 J K mol(-1); (2S,5S)-1: deltaG(++) (298.15 K)= 108.1+/-0.5 kJ mol(-1), deltaH(++) = 49.3+/-0.3 kJ mol(-1), deltaS(++) = -197+/-8 J K(-1) mol(-1); (2S,5R)-1: deltaG(++) (298.15 K)=108.6+/-0.5 kJ mol(-1), deltaH(++) = 48.0+/-0.3 kJ mol(-1), deltaS(++) = -203+/-8 J K(-1) mol(-1). The thermodynamic Gibbs free energy of the E/Z equilibrium of the epimers was determined by the stopped-flow multidimensional gas chromatographic technique: deltaG(E/Z) (298.15 K)= -0.5 kJ mol(-1), deltaH(E/Z) = 1.4 kJ mol(-1) and deltaS(E/Z) = 6.3 J K(-1) mol(-1). An interconversion pathway proceeding through ring-opening and formation of a zwitterion and an enol ether/alcohol intermediate of 1 is proposed.  相似文献   

15.
在密度泛函和从头算理论水平下计算了单重态的NC2S+离子的结构、能量、光谱以及稳定性. 在B3LYP/6-311G(d)水平下, 得到8个异构体, 它们由15个过渡态相连接. 在CCSD(T)/6-311+G(2df)//QCISD/6-311G(d)+ZPVE水平下, 得到能量最低的异构体是直线型的具有1Σ电子态的NCCS+(1)(0.0 kJ/mol), 其次是直线型的异构体CNCS+(2)(54.8 kJ/mol). 两个低能量的异构体1和2及另外一个高能量的直线型异构体CCNS+(3)(323.8 kJ/mol)都具有相当大的动力学稳定性, 这三个异构体在具备一定条件的实验室和星际条件下是可以进行观测的. 分析了这3个异构体的成键性质.  相似文献   

16.
The valence shell photoelectron spectrum, threshold photoelectron spectrum, and threshold photoelectron photoion coincidence (TPEPICO) mass spectra of acetone have been measured using synchrotron radiation. New vibrational progressions have been observed and assigned in the X 2B2 state photoelectron bands of acetone-h6 and acetone-d6, and the influence of resonant autoionization on the threshold electron yield has been investigated. The dissociation thresholds for fragment ions up to 31 eV have been measured and compared to previous values. In addition, kinetic modeling of the threshold region for CH3* and CH4 loss leads to new values of 78 +/- 2 kJ mol(-1) and 75 +/- 2 kJ mol(-1), respectively, for the 0 K activation energies for these two processes. The result for the methyl loss channel is in reasonable agreement with, but slightly lower than, that of 83 +/- 1 kJ mol(-1) derived in a recent TPEPICO study by Fogleman et al. The modeling accounts for both low-energy dissociation channels at two different ion residence times in the mass spectrometer. Moreover, the effects of the ro-vibrational population distribution, the electron transmission efficiency, and the monochromator band-pass are included. The present activation energies yield a Delta(f)H298 for CH3CO+ of 655 +/- 3 kJ mol(-1), which is 4 kJ mol(-1) lower than that reported by Fogleman et al. The present Delta(f)H298 for CH3CO+ can be combined with the Delta(f)H298 for CH2CO (-47.5 +/- 1.6 kJ mol(-1)) and H+ (1530 kJ mol(-1)) to yield a 298 K proton affinity for ketene of 828 +/- 4 kJ mol(-1), in good agreement with the value (825 kJ mol(-1)) calculated at the G2 level of theory. The measured activation energy for CH4 loss leads to a Delta(f)H298 (CH2CO+*) of 873 +/- 3 kJ mol(-1).  相似文献   

17.
The kinetics of the unusually fast reaction of cis- and trans-[Ru(terpy)(NH3)2Cl]2+ (with respect to NH3; terpy=2,2':6',2"-terpyridine) with NO was studied in acidic aqueous solution. The multistep reaction pathway observed for both isomers includes a rapid and reversible formation of an intermediate Ru(III)-NO complex in the first reaction step, for which the rate and activation parameters are in good agreement with an associative substitution behavior of the Ru(III) center (cis isomer, k1=618 +/- 2 M(-1) s(-1), DeltaH(++) = 38 +/- 3 kJ mol(-1), DeltaS(++) = -63 +/- 8 J K(-1) mol(-1), DeltaV(++) = -17.5 +/- 0.8 cm3 mol(-1); k -1 = 0.097 +/- 0.001 s(-1), DeltaH(++) = 27 +/- 8 kJ mol(-1), DeltaS(++) = -173 +/- 28 J K(-1) mol(-1), DeltaV(++) = -17.6 +/- 0.5 cm3 mol(-1); trans isomer, k1 = 1637 +/- 11 M(-1) s(-1), DeltaH(++) = 34 +/- 3 kJ mol(-1), DeltaS(++) = -69 +/-11 J K(-1) mol(-1), DeltaV(++) = -20 +/- 2 cm3 mol(-1); k(-1)=0.47 +/- 0.08 s(-1), DeltaH(++)=39 +/- 5 kJ mol(-1), DeltaS(++) = -121 +/-18 J K(-1) mol(-1), DeltaV(++) = -18.5 +/- 0.4 cm3 mol(-1) at 25 degrees C). The subsequent electron transfer step to form Ru(II)-NO+ occurs spontaneously for the trans isomer, followed by a slow nitrosyl to nitrite conversion, whereas for the cis isomer the reduction of the Ru(III) center is induced by the coordination of an additional NO molecule (cis isomer, k2=51.3 +/- 0.3 M(-1) s(-1), DeltaH(++) = 46 +/- 2 kJ mol(-1), DeltaS(++) = -69 +/- 5 J K(-1) mol(-1), DeltaV(++) = -22.6 +/- 0.2 cm3 mol(-1) at 45 degrees C). The final reaction step involves a slow aquation process for both isomers, which is interpreted in terms of a dissociative substitution mechanism (cis isomer, DeltaV(++) = +23.5 +/- 1.2 cm3 mol(-1); trans isomer, DeltaV(++) = +20.9 +/- 0.4 cm3 mol(-1) at 55 degrees C) that produces two different reaction products, viz. [Ru(terpy)(NH3)(H2O)NO]3+ (product of the cis isomer) and trans-[Ru(terpy)(NH3)2(H2O)]2+. The pi-acceptor properties of the tridentate N-donor chelate (terpy) predominantly control the overall reaction pattern.  相似文献   

18.
IntroductionSmallclusterscontainingcarbonandsulfur,suchasCS ,C2 SandC3 S ,whichpossesslargepermanentdipolemomentsandhavebeenidentifiedinthecarbonstarIRC+ 10°2 16andintheTauruscoldmoleculardensecloudTMC 1,1 7haveattractedmuchattentionbecauseoftheirimportantroles…  相似文献   

19.
Complex formation between gaseous Li+ ions and sulfur-containing neutral ligands, such as H2S, Me2Sn (n = 1-5; Me = CH3) and various isomers of hexasulfur (S6), has been studied by ab initio MO calculations at the G3X(MP2) level of theory. Generally, the formation of LiS(n) heterocycles and clusters is preferred in these reactions. The binding energies of the cation in the 29 complexes investigated range from -88 kJ mol(-1) for [H2SLi]+ to -189 kJ mol(-1) for the most stable isomer of [Me2S5Li]+ which contains three-coordinate Li+. Of the various S6 ligands (chair, boat, prism, branched ring, and triplet chain structures), two isomeric complexes containing the S5==S ligand have the highest binding energies (-163+/-1 kJ mol(-1)). However, the global minimum structure of [LiS6]+ is of C(3v) symmetry with the six-membered S(6) homocycle in the well-known chair conformation and three Li--S bonds with a length of 256 pm (binding energy: -134 kJ mol(-1)). Relatively unstable isomers of S6 are stabilized by complex formation with Li+. The interaction between the cation and the S6 ligands is mainly attributed to ion-dipole attraction with a little charge transfer, except in cations containing the six sulfur atoms in the form of separated neutral S2, S3, or S4 units, as in [Li(S3)2]+ and [Li(S2)(S4)]+. In the two most stable isomers of the [LiS6]+ complexes, the number of S--S bonds is at maximum and the coordination number of Li+ is either 3 or 4. A topological analysis of all investigated complexes revealed that the Li--S bonds of lengths below 280 pm are characterized by a maximum electron-density path and closed-shell interaction.  相似文献   

20.
The compound CpRh(C(2)H(3)CO(2)(t)Bu)(2) 1 has been synthesised as a mixture of two pairs of interconverting isomers which differ in the relative orientations of the alkene substituents. The four isomers have been fully characterised by NMR spectroscopy. When complex 1 is photolysed in the presence of a silane, HSiR(2)R'R(2)R'= Et(3), Me(3), HEt(2), (OMe)(3) and Me(2)Cl] the corresponding Si-H oxidative addition products CpRh(SiR(2)R')(H)(C(2)H(3)CO(2)(t)Bu) and CpRh(H)(2)(SiR(2)R')(2) are formed. The Rh(III) complexes CpRh(SiR(2)R')(H)(C(2)H(3)CO(2)(t)Bu) exist in two isomeric forms of comparable energy which interconvert in an intramolecular process that does not involve a reversible [1,3] hydride or [1,3] silyl migration. The hydride (1)H NMR resonances for these species consequently broaden before coalescing into a single peak. For R(2)R'= Et(3), the activation parameters for interchange from the major to minor isomer were Delta H++= 60.2 +/- 2 kJ mol(-1) and Delta S++= 8 +/- 9 J mol(-1) K(-1), while for R(2)R'= Me(3) and Et(2)H, Delta H++= 61.5 +/- 1 kJ mol(-1), Delta S++= 6 +/- 5 J mol(-1) K(-1), and Delta H++= 61.8 +/- 3 kJ mol(-1), Delta S++= 12 +/- 9 J mol(-1) K(-1) respectively for conversion from the major isomer to the minor. For these complexes an eta(2)-Rh-H-Si transition state or intermediate is consistent with the evidence. When R(2)R'=(OMe)(3) and Me(2)Cl the change in appearance of the hydride resonances is more complex, with the activation parameters for interchange from the major to minor isomer for the former species being Delta H++= 78.3 +/- 2 kJ mol(-1) and Delta S++= 30 +/- 7 J mol(-1) K(-1) while for Me(2)Cl the barrier proved too high to measure before decomposition occurred. The complex spectral changes could be simulated when a discrete eta(2)-Rh-H-Si intermediate was involved in the isomer interconversion process and hence silane rotation in all these systems is proposed to involve two isomers of CpRh(eta(2)-HSiR(2)R')(C(2)H(3)CO(2)(t)Bu).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号