首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The B3LYP/6-311++G(2d,2p) study of the potential energy surface of eugenol (4-allyl-2-methoxyphenol, 2-methoxy-4-pro-2-emyl-phenol) was performed with the aim of finding all possible conformers of the molecule. Twelve conformers were found belonging to one of three groups differing in the relative orientation of the OH and OCH 3 moieties: SA (syn-anti), AA (antianti) and AG (antigauche). The lowest-energy conformers of eugenol (SAA+, SAA- and SAS) stabilized by the intramolecular hydrogen bond differ only in the arrangement of the allyl group with respect to the aromatic ring. The calculated abundance of all three SA species equals 99.8% whereas the remaining AA and AG show the negligible population of 0.2%. In consonance with theoretical predictions, only syn-anti conformers are present in the low temperature matrices studied. The presented FTIR results allow, for the first time, unequivocal identification and spectral characterization of three SA conformers of the eugenol molecule isolated in solid argon and xenon. The performed studies reveal that conformational cooling (upon increasing the substrate temperature during deposition) takes place in the studied matrices and that the less stable SAA- and SAS species convert into SAA+. This observation appears to be consistent with the theoretically predicted energy barriers of 6.70 and 10.45 kJ/mol for the SAA- --> SAA+ and SAS --> SAA+ interconversions which are low enough to be surpassed during deposition at higher temperatures.  相似文献   

2.
Laser-ablated Cu, Ag, and Au atoms react with CO and O2 mixture in solid argon to produce carbonyl metal oxides, (O2)Cu(CO)(n) (n = 1, 2), (eta(1)-OO)MCO (M = Ag, Au), OCAuO2CO, and OAuCO, as well as group 11 metal carbonyls and oxides. These carbonyl metal oxides are characterized using infrared spectroscopy on the basis of the results of the isotopic substitution and the CO concentration change. Density functional theory (DFT) calculations have been performed on these molecules. The identifications of these carbonyl metal oxides are confirmed by the good agreement between the experimental and calculated vibrational frequencies, relative absorption intensities, and isotopic shifts. Carbon dioxide is eliminated from these carbonyl metal oxides upon UV irradiation, providing the evidence for the oxidation of carbon monoxide on group 11 metal atoms. The present experiments also reveal that the reactivity of copper toward CO is prior to O2, and the reactivity of silver toward O2 is prior to CO, whereas the reactivity of gold toward CO is comparable to O2.  相似文献   

3.
Intramolecular hydrogen-atom migrations in 2-hydroxy-3-nitropyridine have been investigated by low-temperature matrix-isolation infrared (IR) spectroscopy with the aid of density functional theory (DFT) calculation. An IR spectrum measured after deposition was assigned to an enol isomer, the conformation of which is anti in relation to OH versus N in the pyridine ring. When the matrix sample was exposed to UV and visible light (lambda>350 nm), an IR spectrum consistent with a keto product was observed. During the irradiation, an IR spectrum of a transient species, a photoreaction intermediate between anti-enol and keto, was observed, which was assigned to syn-enol. The bands of syn-enol disappeared completely when the irradiation was stopped, while those of the original isomer, anti-enol, reappeared. No reverse isomerization was observable in the corresponding deuterated species. This led to the conclusion that the isomerization from syn to anti occurs through hydrogen-atom tunneling. On the other hand, an aci-nitro form was produced by UV irradiation (lambda=365+/-10 nm) without visible light. The conformation around the aci-nitro group was determined to be cis-cis by comparison with the spectral patterns obtained by the DFT/B3LYP/6-31++G** calculation. The dynamics of the hydrogen-atom migrations between anti- and syn-enols, syn-enol and keto, and anti-enol and aci-nitro are discussed in terms of the potential surfaces obtained by the DFT calculation.  相似文献   

4.
Infrared spectra of the water clusters have been measured in the N2 + O2 matrix. The aggregation process of water in the matrix has been monitored by annealing the deposited samples up to 40 K and UV irradiation. The monomer, dimer, cyclic trimer and cyclic pentamer are found as water clusters in the matrix. For the hexamer, several structures such as chair, cage, prism, bag 1 and/or book 1 are likely to exist. By UV irradiation, the cyclic pentamer is predominantly formed from the monomer and dimer. On the other hand, by annealing the deposited sample, several hexamers are formed. The theoretical calculation for water clusters has revealed that the formation of one hydrogen bonding in a hydrogen-bonded chain cooperatively enhances or diminishes the strength of another hydrogen bond. Both proton donor (D) and acceptor (A) participating in a hydrogen-bonding pair DA are capable of forming hydrogen bonding with the other water molecules; D can additionally accept two protons and donate one proton, and A can additionally donate two protons and accept one proton. We have proposed the classification of hydrogen-bonding patterns considering the cooperativity, denoting as d'a'DAd'a', where d and a are integers indicating the number of proton donors and acceptors to D (the single prime) and A (the double prime), respectively. Then, a magnitude given by MOH = -d' + a' + d' - a' has been introduced, which is very useful for connecting the hydrogen-bonding patterns to their OH wavenumbers. As a result, it is revealed that the OH stretching bands of water clusters are characterized by eight indicators (free and MOH = -2, -1, 0, 1, 2, 3 and 4). The classification proposed here is applicable to the OH band analysis for the hydrogen-bonded water and alcohols in a condensed phase.  相似文献   

5.
The absolute configuration and conformation of 1-phenylethanol (1-PhEtOH) have been determined by matrix-isolation infrared (IR) and vibrational circular dichroism (VCD) spectroscopy combined with quantum chemical calculations. Quantum chemical calculations have identified that there are three conformers, namely, I, II, and III, in which characteristic intramolecular interactions are found. The IR spectrum-conformation correlation for 1-PhEtOH has been developed by the Ar matrix-isolation IR measurement and used for the assignments of the observed IR bands. In a dilute CCl(4) solution, 1-PhEtOH exists predominantly as conformer I along with a trace amount of conformer II. By considering conformations and intermolecular hydrogen-bonding in the spectral simulation for (S)-1-PhEtOH, we have successfully reproduced the VCD spectrum of (-)-1-PhEtOH observed in a dilute CS(2) solution. Thus, (-)-1-PhEtOH is of S-configuration and conformer I in the dilute solution. The same method has been applied to analyze the VCD spectra measured in the liquid state of (-)-1-PhEtOH. The absolute configuration of 1-PhEtOH in the condensed phase is enabled by identifying VCD bands that are insensitive to conformational changes and intermolecular interactions. The present work provides a combinatorial procedure for determination of both the absolute configuration and the conformation of chiral molecules in a dilute solution and condensed phase.  相似文献   

6.
A new partially halogenated ether (ClCF2CF(CF3)OCF2CH3) has been synthesized and characterized using DSC, GC, 1H and 19F NMR, IR. The experimental infrared spectra of this “flexible” molecule have been successfully interpreted on the basis of reliable Density Functional Theory calculations. An efficient method useful for the identification of the many stable conformers has been developed and applied. Infrared spectra of the stable conformers have been simulated after full geometry optimization. The results obtained allow detection of conformation-sensitive bands, making possible the interpretation of fine details in the spectra.  相似文献   

7.
Density functional theory calculations for the structure and conformational equilibrium of thiacalix[4]arene are reported. The conformational equilibrium of thiacalix[4]arene, a heterocalixarene in which the phenol groups are bridged by sulphur atoms is compared to the conformational equilibrium of calix[4]arene. Thiacalix[4]arene conformational energies relative to the cone conformer (ΔE's) are reduced in comparison with calix[4]arene. This conformational change is in qualitative agreement with recent NMR spectroscopy measurements of the conformational equilibrium for a tetraethylether of thiacalix[4]arene in a CDCl3 solution which indicates an enhanced chemical exchange of thiacalixarene conformers in comparison with similar methylene bridged structures. Density functional theory results for the structure of thiacalix[4]arene are in good agreement with recent X-ray diffraction measurements. The electrostatic potentials in the cone conformers of thiacalix[4]arene and calix[4]arene suggest that their complexation or recognition abilities can be significantly different. Dipole moments of the four thiacalix[4]arene conformers are in the order: cone>1,2-alternate>partial-cone>1,3-alternate.  相似文献   

8.
Porphyrin and pincer complexes are both important categories of compounds in biological and catalytic systems. The idea to combine them is computationally investigated in this work. By employment of density functional theory (DFT), conceptual DFT, and time-dependent DFT approaches, structure, spectroscopy, and reactivity properties of porphyrin pincers are systematically studied for a selection of divalent metal ions. We found that the porphyrin pincers are structurally and spectroscopically different from their precursors and are more reactive in electrophilic and nucleophilic reactions. A few quantitative linear/exponential relationships have been discovered between bonding interactions, charge distributions, and DFT chemical reactivity indices. These results are implicative in chemical modification of hemoproteins and understanding chemical reactivity in heme-containing and other biologically important complexes and cofactors.  相似文献   

9.
A long standing question in the study of supported clusters of metal atoms in the properties of metal–oxide interfaces is the extent of metal–oxide charge transfer. However, the determination of this charge transfer is far from straight forward and a combination of different methods (both experimental and theoretical) is required. In this paper, we systematically study the charging of some adsorbed transition metal atoms on two widely used metal oxides surfaces [α-Al2O3 (0001) and rutile TiO2 (110)]. Two procedures are combined to this end: the computed vibrational shift of the CO molecule, that is used as a probe, and the calculation of the atoms charges from a Bader analysis of the electron density of the systems under study. At difference from previous studies that directly compared the vibrational vawenumber of adsorbed CO with that of the gas phase molecule, we have validated the procedure by comparison of the computed CO stretching wavenumbers in isolated monocarbonyls (MCO) and their singly charged ions with experimental data for these species in rare gas matrices. It is found that the computational results correctly reproduce the experimental trend for the observed shift on the CO stretching mode but that care must be taken for negatively charged complexes as in this case there is a significative difference between the total charge of the MCO complex and the charge of the M atom. For the supported adatoms, our results show that while Cu and Ag atoms show a partial charge transfer to the Al2O3 surface, this is not the case for Au adatoms, that are basically neutral on the most stable adsorption site. Pd and Pt adatoms also show a significative amount of charge transfer to this surface. On the TiO2 surface our results allow an interpretation of previous contradictory data by showing that the adsorption of the probe molecule may repolarize the Au adatoms, that are basically neutral when isolated, and show the presence of highly charged Auδ+–CO complexes. The other two coinage metal atoms are found to significatively reduce the TiO2 surface. The combined use of the shift on the vibrational frequency of the CO molecule and the computation of the Bader charges shows to be an useful tool for the study the charge state of adsorbed transition metal atoms and allow to rationalize the information coming from complementary tools.  相似文献   

10.
The FT-IR spectra of two diastereomers of 2,3-butanediol, (R,S) and (S,S), isolated in low-temperature argon and xenon matrixes were studied, allowing the identification of two different conformers for each compound. These conformers were characterized by a +/-gauche arrangement around the O-C-C-O dihedral angle, thus enabling the establishment of a very weak intramolecular hydrogen bond of the O...H-O type. No other forms of these compounds were identified in matrixes, despite the fact that these four conformers had calculated relative energies from 0 to 5.1 kJ mol(-1) and were expected to be thermally populated from 50 to 6% in the gaseous phase of each compound. The nonobservation of additional conformers was explained in terms of low barriers to intramolecular rotation, resulting in the conformational relaxation of the compounds during deposition of the matrixes. The barriers to internal rotation of the OH groups were computed to be less than 4 kJ mol(-1) and are easily overcome in matrixes within the family of conformers with the same heavy atom backbone. The barriers for intramolecular rearrangement of the O-C-C-O dihedral angle in both diastereomers were calculated to range from 20 to 30 kJ mol(-1). Interconversions between the latter conformers were not observed in matrixes, even after annealing up to 65 K. Energy calculations, barriers, and calculated infrared spectra were carried out at the DFT(B3LYP)/6-311++G theory. Additional MP2/6-311++G calculations of energies and vibrational frequencies were performed on the most relevant conformers. Finally, independent estimations of the hydrogen-bond enthalpy in the studied molecules were also obtained based on theoretical structural data and from vibrational frequencies (using well-established empirical correlations). The obtained values for -DeltaH for both diastereomers of 2,3-butanediol amount to ca. 6-8 kJ mol(-1).  相似文献   

11.
Trimethyl phosphate (TMP) and acetylene were codeposited in nitrogen and argon matrices and adducts of these species were identified using infrared spectroscopy. Formation of the adducts was evidenced by shifts in the vibrational frequencies of the modes involving the TMP and acetylene submolecules. The structures of these adducts, energies and the vibrational frequencies were computed at the HF/6-31G** level. Both the experimental and computational studies indicated that two types of TMP-acetylene complexes were formed; one in which the hydrogen in acetylene was bonded to the phosphoryl oxygen and another in which the bonding was at the alkoxy oxygen of the phosphate. In addition to the primary hydrogen bonded interaction at the phosphoryl oxygen, this complex, also appeared to be stablilized by a secondary and weaker interaction involving a methyl hydrogen in TMP and the pi cloud in acetylene--a case of a H...pi interaction. The computed vibrational frequencies in the adducts agreed well with the observed frequencies for the modes involving the TMP submolecule, while the agreement was relatively poor for the modes involving the acetylene submolecule. The stabilization energies of these adducts, corrected for both zero-point energies and basis set superposition errors, were approximately 3 kcal/mol for the phosphoryl complex and, approximately 1 kcal/mol for the alkoxy complex.  相似文献   

12.
 The structures and the conformational energies of nonprotonated, monoprotonated and diprotonated 1,2-ethanediamine have been investigated through density functional theory. The relative performance of local and gradient-corrected functionals is discussed. The existence of hydrogen-bond formation has been determined with electron localisation function calculations. Proton affinities for nonprotonated and monoprotonated 1,2-ethanediamine have been calculated and are in agreement with experimental data. The influence of solvation has been accounted for through the self-consistent isodensity polarisable continuum model. The results for the nonprotonated conformers show that solvation stabilises those conformers which have the lone pair in an antiperiplanar conformation. Solvation of the monoprotonated conformer stabilises significantly the “anti” conformation, which is unstable in the gas phase. For the di-protonated species, solvation stabilises slightly the gauche conformer, which is unstable in the gas phase. Received: 28 September 1999 / Accepted: 2 May 2000 / Published online: 27 September 2000  相似文献   

13.
14.
The adsorption of H2 on a series of gas-phase transition metal (scandium, vanadium, iron, cobalt, and nickel) clusters containing up to 20 metal atoms is studied using IR-multiple photon dissociation spectroscopy complemented with density functional theory based calculations. Comparison of the experimental and calculated spectra gives information on hydrogen-bonding geometries. The adsorption of H2 is found to be exclusively dissociative on Sc(n)O+, V(n)+, Fe(n)+, and Co(n)+, and both atomic and molecularly chemisorbed hydrogen is present in Ni(n)H(m)+ complexes. It is shown that hydrogen adsorption geometries depend on the elemental composition as well as on the cluster size and that the adsorption sites are different for clusters and extended surfaces. In contrast to what is observed for extended metal surfaces, where hydrogen has a preference for high coordination sites, hydrogen can be both 2- or 3-fold coordinated to cationic metal clusters.  相似文献   

15.
The molecular geometry and vibrational frequencies of 4,4'-bipyridine (BPE) in the ground state were calculated using density functional theory (DFT) methods (B3LYP) with 6-31++G(d,p) basis set. The optimized geometric bond lengths and bond angles are obtained by DFT employing the hybrid of Beckes non-local three parameter exchange and correlation functional and Lee-Yang-Parr correlation functional. Fourier transform infrared (FT-IR), Fourier transform Raman (FT-Raman) and near-infrared surface-enhanced Raman scattering (NIR-SERS) spectra of BPE on the silver foil substrate have been recorded. All FT-IR, FT-Raman and NIR-SERS band were assigned on the basis of the B3LYP/6-31++G(d,p) method. The vibrational frequencies obtained by DFT(3LYP) are in good agreement with observed results. The NIR-SERS of BPE excited by 1064nm laser line is little difference with that excited by visible laser line. This phenomenon is result to the increase of the contribution of CHEM enhancement effect. Surface selection rules derived from the electromagnetic enhancement model were employed to infer the orientations of BPE on the silver foil substrate surface. Some vibrational frequency which are sensitive to the planar or non-planar structure of BPE, and to the dihedral angle were concluded.  相似文献   

16.
We present a density functional theory (DFT) study on the mechanisms of gas-phase ozonolysis of three isomers of difluoroethylene, namely, cis-1,2-difluoroethylene, trans-1,2-difluoroethylene, and 1,1-difluoroethylene. MPW1K/cc-pVDZ and BHandHLYP/cc-pVDZ methods are employed to optimize the geometries of stationary points as well as the points on the minimum energy path (MEP). The energies of all the points were further refined at the QCISD(T)/cc-pVDZ and QCISD(T)/6-31+G(df,p) levels of theory with zero-point energy (ZPE) corrections. The ozone-cis-1,2-difluoroethylene reaction is predicted to be slower than the ozone-trans-1,2-difluoroethylene reaction. The enhanced reactivity of trans-1,2-difluoroethylene relative to the cis isomer is similar to the reactions of ozone with cis- and trans-dichloroethylene. The ozone-1,1-difluoroethylene reaction is predicted to be slower than the ozone-trans-1,2-difluoroethylene reaction. These results are in agreement with experimental studies. The calculated mechanisms indicate that in ozone-difluoroethylene reactions the yields of OH might be trivial, which is different from the reactions of ozone with unsaturated hydrocarbons.  相似文献   

17.
The structures and vibrational properties of a series of styryl-substituted sexithiophenes and their charged species have been examined using resonance Raman spectroscopy in conjunction with density functional theory calculations. The calculated geometries of the radical cations and dications indicate that the quinoidal charged defects are more strongly localized in the center of the thiophene backbone than is observed in other sexithiophenes. This defect confinement, induced by the positions of the styryl substituents, is particularly evident in the dication species. However, the defect confinement weakens when alkoxy groups are added onto the phenyl rings by causing the extension of the charged defect into the styryl groups. The Raman spectra of the neutral styryl sexithiophenes are dominated by intense thiophene symmetrical stretching modes in both the measured and predicted spectra. Oxidation generates radical cations and dications, both of which can be observed in the solution state resonance Raman spectra. Unlike other sexithiophenes, which generally show a downshift of the intense thiophene stretching mode from the radical cation to the dication, a small upshift is observed for the styryl-substituted sexithiophenes. The theoretical spectra predict an insignificant change during this transition and the eigenvector for this mode reveals that it is localized over the same area occupied by the confined defect. In contrast, the solid state resonance Raman spectra of electrochemically oxidized films reveal evidence of solely radical cations and there is an appreciable downshift of the intense thiophene stretching mode compared with the corresponding mode in the solution spectra. This implies that the increase in the effective conjugation length from the solution to the solid state is greater for the radical cations than for the neutral species. It therefore appears that the radical cations form pi stacks in the solid film and the resulting intermolecular interactions effectively allow a further extension of the electron delocalization.  相似文献   

18.
The density functional theory analysis predicts that the thermal decarbonylation of cyclopropenones proceeds by the sequential and regioselective cleavage of both single bonds in a three-membered ring. The initial ring-opening process results in the formation of a reactive zwitterionic intermediate 6, which is separated from the free alkyne and carbon monoxide by a very low energy barrier. Femtosecond pump-probe transient absorption spectroscopy experiments showed that light-induced decarbonylation is also a stepwise process but apparently proceeds on the excited-state surface. The lifetime of the intermediate in the photodecarbonylation reaction is very short and is dependent on substitution and solvent polarity. Thus, bis-p-anisyl-substituted species decays with tau = 0.6 ps, bis-alpha-naphthyl-substituted intermediate has a lifetime of tau = 11 ps, while the bis(2-methoxy-1-naphthyl)-substituted analogue survives for 83 ps in chloroform and for 168 ps in argon-saturated methanol. The loss of carbon monoxide from these intermediates results in the formation of corresponding acetylenes in an electronically ground state. The addition of triplet quenchers does not affect the dynamics or outcome of the reaction.  相似文献   

19.
Density functional theory (DFT) studies were performed to investigate the effect of substituents on the properties of benzdiyne derivatives. Twelve substituted benzdiynes-C(6)X(2), where X = F, Cl, Br, Me, CF(3), CN, OH, NO(2), NH(2), OMe, NMe(2), and Ph-were considered along with the unsubstituted 1,4-benzdiyne. The structures, vibrational frequencies, and IR intensities of these benzdiynes were studied with a popular three-parameter hybrid density functional (B3LYP) combined with the split-valence 6-31G(d) basis set and Dunning's correlation-consistent polarized triple-zeta (cc-pVTZ) basis set. The relative stabilities of the substituted benzdiynes were studied with the help of reaction energies of isodesmic reactions, which showed that the electron-withdrawing groups destabilized the benzdiynes more than they did the corresponding benzenes, whereas the electron-donating groups stabilized the benzdiynes more than they did their benzene counterparts. Correlation analyses revealed that field/inductive effects played a more important role than did resonance effects. The changes in atomic charges and spin populations due to the substituents were also studied. The asymmetric nu(Ctbd1;C) stretching modes obtained were close to the 1500-cm(-)(1) mark. Reinvestigation of the experimental results supported these results; a weak IR band at 1486 cm(-)(1) was assigned to this asymmetric stretching mode in C(6)(CF(3))(2) F. Some other benzdiynes also had large IR intensity values for their asymmetric nu(Ctbd1;C) vibrational modes due to the coupling with other vibrational modes. Heats of formation for the substituted benzdiynes were obtained from the reaction energies calculated at the B3LYP/cc-pVTZ level of theory.  相似文献   

20.
Static and dynamical Density Functional Theory studies of 2,6-di-O-acetyl-3,4-O-isopropylidene-D-galactopyranosyl cation have shown that this cation can exist in two conformers characterized as (2)S(O) and B(2,5), respectively. The (2)S(O) conformer has the O-2 acyl group equatorial with the carbonyl syn to H-2 and is populated by monocyclic oxocarbenium ions. These conformational features are present in the structurally related glycosyl donor ethyl 2,6-di-O-benzoyl-3,4-O-isopropylidene-beta-D-galactothiopyranoside as determined by X-ray diffraction studies. The B(2,5) conformer has O-2 axial and allows the carbonyl to rotate and close the five-membered ring to form a bicyclic dioxolenium ion. Constraints based on natural internal coordinates were implemented to study this conformational transition. In this way the barrier to interconversion has been determined to be 34 kJ mol(-)(1) with a transition state characterized as (O)S(2) and a pathway involving pseudorotation. Thus, for the first time the structures and energetics of the key ions postulated to be involved in neighboring group assisted glycosylation reactions have been determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号